結果

問題 No.1301 Strange Graph Shortest Path
ユーザー zkou
提出日時 2020-11-07 10:50:51
言語 PyPy3
(7.3.15)
結果
AC  
実行時間 2,412 ms / 3,000 ms
コード長 4,164 bytes
コンパイル時間 293 ms
コンパイル使用メモリ 82,112 KB
実行使用メモリ 313,880 KB
最終ジャッジ日時 2024-09-13 00:44:25
合計ジャッジ時間 62,214 ms
ジャッジサーバーID
(参考情報)
judge3 / judge4
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 2
other AC * 33
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

import sys
import heapq
input = sys.stdin.readline
class mcf_graph:
def __init__(self, n):
self.n = n
self.pos = []
self.g = [[] for _ in range(n)]
def add_edge(self, from_, to, cap, cost):
# assert 0 <= from_ < self.n
# assert 0 <= to < self.n
m = len(self.pos)
self.pos.append((from_, len(self.g[from_])))
self.g[from_].append(self.__class__._edge(to, len(self.g[to]), cap, cost))
self.g[to].append(self.__class__._edge(from_, len(self.g[from_]) - 1, 0, -cost))
return m
class edge:
def __init__(self, from_, to, cap, flow, cost):
self.from_ = from_
self.to = to
self.cap = cap
self.flow = flow
self.cost = cost
def get_edge(self, i):
_e = self.g[self.pos[i][0]][self.pos[i][1]]
_re = self.g[_e.to][_e.rev]
return self.__class__.edge(self.pos[i][0], _e.to, _e.cap + _re.cap, _re.cap, _e.cost)
def edges(self):
ret = []
for i in range(len(self.pos)):
_e = self.g[self.pos[i][0]][self.pos[i][1]]
_re = self.g[_e.to][_e.rev]
ret.append(self.__class__.edge(self.pos[i][0], _e.to, _e.cap + _re.cap, _re.cap, _e.cost))
return ret
def slope(self, s, t, flow_limit=float('inf')):
# assert 0 <= s < self.n
# assert 0 <= t < self.n
# assert s != t
dual = [0] * self.n
dist = [float('inf')] * self.n
pv = [-1] * self.n
pe = [-1] * self.n
vis = [False] * self.n
def _dual_ref():
nonlocal dual, dist, pv, pe, vis
dist = [float('inf')] * self.n
pv = [-1] * self.n
pe = [-1] * self.n
vis = [False] * self.n
que = [(0, s)]
dist[s] = 0
while que:
_, v = heapq.heappop(que)
if vis[v]:
continue
vis[v] = True
if v == t:
break
for i in range(len(self.g[v])):
e = self.g[v][i]
if vis[e.to] or e.cap == 0:
continue
cost = e.cost - dual[e.to] + dual[v]
if dist[e.to] > dist[v] + cost:
dist[e.to] = dist[v] + cost
pv[e.to] = v
pe[e.to] = i
heapq.heappush(que, (dist[e.to], e.to))
if not vis[t]:
return False
for v in range(self.n):
if not vis[v]:
continue
dual[v] -= dist[t] - dist[v]
return True
flow = 0
cost = 0
prev_cost = -1
result = [(flow, cost)]
while flow < flow_limit:
if not _dual_ref():
break
c = flow_limit - flow
v = t
while v != s:
c = min(c, self.g[pv[v]][pe[v]].cap)
v = pv[v]
v = t
while v != s:
e = self.g[pv[v]][pe[v]]
e.cap -= c
self.g[v][e.rev].cap += c
v = pv[v]
d = -dual[s]
flow += c
cost += c * d
if prev_cost == d:
result.pop()
result.append((flow, cost))
prev_cost = cost
return result
def flow(self, s, t, flow_limit=float('inf')):
return self.slope(s, t, flow_limit)[-1]
class _edge:
def __init__(self, to, rev, cap, cost):
self.to = to
self.rev = rev
self.cap = cap
self.cost = cost
N, M = map(int, input().split())
g = mcf_graph(N + 2 * M)
for i in range(M):
u, v, c, d = map(int, input().split())
u -= 1
v -= 1
u2 = N + i
v2 = N + M + i
g.add_edge(u, u2, 2, 0)
g.add_edge(v, u2, 2, 0)
g.add_edge(u2, v2, 1, c)
g.add_edge(u2, v2, 1, d)
g.add_edge(v2, u, 2, 0)
g.add_edge(v2, v, 2, 0)
print(g.flow(0, N - 1, 2)[1])
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0