結果
問題 | No.1301 Strange Graph Shortest Path |
ユーザー | nok0 |
提出日時 | 2020-11-07 11:49:47 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 215 ms / 3,000 ms |
コード長 | 4,619 bytes |
コンパイル時間 | 2,575 ms |
コンパイル使用メモリ | 225,812 KB |
実行使用メモリ | 37,228 KB |
最終ジャッジ日時 | 2024-09-13 00:43:03 |
合計ジャッジ時間 | 9,366 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,816 KB |
testcase_01 | AC | 2 ms
6,816 KB |
testcase_02 | AC | 148 ms
36,164 KB |
testcase_03 | AC | 120 ms
33,100 KB |
testcase_04 | AC | 186 ms
34,964 KB |
testcase_05 | AC | 130 ms
36,184 KB |
testcase_06 | AC | 166 ms
33,504 KB |
testcase_07 | AC | 152 ms
34,220 KB |
testcase_08 | AC | 128 ms
32,664 KB |
testcase_09 | AC | 133 ms
30,980 KB |
testcase_10 | AC | 120 ms
32,116 KB |
testcase_11 | AC | 157 ms
33,540 KB |
testcase_12 | AC | 152 ms
33,432 KB |
testcase_13 | AC | 135 ms
35,764 KB |
testcase_14 | AC | 173 ms
31,012 KB |
testcase_15 | AC | 147 ms
31,984 KB |
testcase_16 | AC | 186 ms
35,660 KB |
testcase_17 | AC | 165 ms
37,228 KB |
testcase_18 | AC | 151 ms
33,048 KB |
testcase_19 | AC | 145 ms
32,672 KB |
testcase_20 | AC | 174 ms
32,064 KB |
testcase_21 | AC | 160 ms
35,152 KB |
testcase_22 | AC | 188 ms
32,408 KB |
testcase_23 | AC | 149 ms
36,124 KB |
testcase_24 | AC | 183 ms
33,412 KB |
testcase_25 | AC | 179 ms
35,064 KB |
testcase_26 | AC | 164 ms
33,436 KB |
testcase_27 | AC | 147 ms
33,824 KB |
testcase_28 | AC | 133 ms
35,228 KB |
testcase_29 | AC | 215 ms
34,104 KB |
testcase_30 | AC | 162 ms
34,776 KB |
testcase_31 | AC | 179 ms
34,528 KB |
testcase_32 | AC | 2 ms
6,940 KB |
testcase_33 | AC | 102 ms
29,804 KB |
testcase_34 | AC | 162 ms
36,608 KB |
ソースコード
#include <bits/stdc++.h> using namespace std; #pragma GCC target("avx2") #pragma GCC optimize("O3") #pragma GCC optimize("unroll-loops") namespace atcoder { template <class Cap, class Cost> struct mcf_graph { public: mcf_graph() {} mcf_graph(int n) : _n(n), g(n) {} int add_edge(int from, int to, Cap cap, Cost cost) { assert(0 <= from && from < _n); assert(0 <= to && to < _n); assert(0 <= cap); assert(0 <= cost); int m = int(pos.size()); pos.push_back({from, int(g[from].size())}); int from_id = int(g[from].size()); int to_id = int(g[to].size()); if(from == to) to_id++; g[from].push_back(_edge{to, to_id, cap, cost}); g[to].push_back(_edge{from, from_id, 0, -cost}); return m; } struct edge { int from, to; Cap cap, flow; Cost cost; }; edge get_edge(int i) { int m = int(pos.size()); assert(0 <= i && i < m); auto _e = g[pos[i].first][pos[i].second]; auto _re = g[_e.to][_e.rev]; return edge{ pos[i].first, _e.to, _e.cap + _re.cap, _re.cap, _e.cost, }; } std::vector<edge> edges() { int m = int(pos.size()); std::vector<edge> result(m); for(int i = 0; i < m; i++) { result[i] = get_edge(i); } return result; } std::pair<Cap, Cost> flow(int s, int t) { return flow(s, t, std::numeric_limits<Cap>::max()); } std::pair<Cap, Cost> flow(int s, int t, Cap flow_limit) { return slope(s, t, flow_limit).back(); } std::vector<std::pair<Cap, Cost>> slope(int s, int t) { return slope(s, t, std::numeric_limits<Cap>::max()); } std::vector<std::pair<Cap, Cost>> slope(int s, int t, Cap flow_limit) { assert(0 <= s && s < _n); assert(0 <= t && t < _n); assert(s != t); // variants (C = maxcost): // -(n-1)C <= dual[s] <= dual[i] <= dual[t] = 0 // reduced cost (= e.cost + dual[e.from] - dual[e.to]) >= 0 for all edge std::vector<Cost> dual(_n, 0), dist(_n); std::vector<int> pv(_n), pe(_n); std::vector<bool> vis(_n); auto dual_ref = [&]() { std::fill(dist.begin(), dist.end(), std::numeric_limits<Cost>::max()); std::fill(pv.begin(), pv.end(), -1); std::fill(pe.begin(), pe.end(), -1); std::fill(vis.begin(), vis.end(), false); struct Q { Cost key; int to; bool operator<(Q r) const { return key > r.key; } }; std::priority_queue<Q> que; dist[s] = 0; que.push(Q{0, s}); while(!que.empty()) { int v = que.top().to; que.pop(); if(vis[v]) continue; vis[v] = true; if(v == t) break; // dist[v] = shortest(s, v) + dual[s] - dual[v] // dist[v] >= 0 (all reduced cost are positive) // dist[v] <= (n-1)C for(int i = 0; i < int(g[v].size()); i++) { auto e = g[v][i]; if(vis[e.to] || !e.cap) continue; // |-dual[e.to] + dual[v]| <= (n-1)C // cost <= C - -(n-1)C + 0 = nC Cost cost = e.cost - dual[e.to] + dual[v]; if(dist[e.to] - dist[v] > cost) { dist[e.to] = dist[v] + cost; pv[e.to] = v; pe[e.to] = i; que.push(Q{dist[e.to], e.to}); } } } if(!vis[t]) { return false; } for(int v = 0; v < _n; v++) { if(!vis[v]) continue; // dual[v] = dual[v] - dist[t] + dist[v] // = dual[v] - (shortest(s, t) + dual[s] - dual[t]) + // (shortest(s, v) + dual[s] - dual[v]) = - shortest(s, t) + // dual[t] + shortest(s, v) = shortest(s, v) - shortest(s, t) >= // 0 - (n-1)C dual[v] -= dist[t] - dist[v]; } return true; }; Cap flow = 0; Cost cost = 0, prev_cost_per_flow = -1; std::vector<std::pair<Cap, Cost>> result; result.push_back({flow, cost}); while(flow < flow_limit) { if(!dual_ref()) break; Cap c = flow_limit - flow; for(int v = t; v != s; v = pv[v]) { c = std::min(c, g[pv[v]][pe[v]].cap); } for(int v = t; v != s; v = pv[v]) { auto& e = g[pv[v]][pe[v]]; e.cap -= c; g[v][e.rev].cap += c; } Cost d = -dual[s]; flow += c; cost += c * d; if(prev_cost_per_flow == d) { result.pop_back(); } result.push_back({flow, cost}); prev_cost_per_flow = d; } return result; } private: int _n; struct _edge { int to, rev; Cap cap; Cost cost; }; std::vector<std::pair<int, int>> pos; std::vector<std::vector<_edge>> g; }; } // namespace atcoder int n, m, u, v, c, d; int main() { scanf("%d%d", &n, &m); atcoder::mcf_graph<int, long long> mcf(n); while(m--) { scanf("%d%d%d%d", &u, &v, &c, &d); u--, v--; mcf.add_edge(u, v, 1, c); mcf.add_edge(u, v, 1, d); mcf.add_edge(v, u, 1, c); mcf.add_edge(v, u, 1, d); } auto p = mcf.flow(0, n - 1, 2); printf("%lld\n", p.second); return 0; }