結果
| 問題 |
No.8030 ミラー・ラビン素数判定法のテスト
|
| ユーザー |
|
| 提出日時 | 2020-11-07 15:04:08 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 8,362 bytes |
| コンパイル時間 | 4,245 ms |
| コンパイル使用メモリ | 218,460 KB |
| 最終ジャッジ日時 | 2025-01-15 21:30:29 |
|
ジャッジサーバーID (参考情報) |
judge3 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | WA * 10 |
コンパイルメッセージ
main.cpp:354:39: warning: multi-character character constant [-Wmultichar]
354 | wt(primes::miller_rabin<i64>(x) ? ' 1\n' : ' 0\n');
| ^~~~~~
main.cpp:354:48: warning: multi-character character constant [-Wmultichar]
354 | wt(primes::miller_rabin<i64>(x) ? ' 1\n' : ' 0\n');
| ^~~~~~
ソースコード
#include <bits/stdc++.h>
using namespace std;
using u32 = uint_fast32_t;
using u64 = uint_fast64_t;
using u128 = __uint128_t;
using i32 = int_fast32_t;
using i64 = int_fast64_t;
using i128 = __int128_t;
int isqrt(i64 n) {
return sqrtl(n);
}
namespace primes {
using ll = long long;
struct mod64 {
u64 n;
static u64 mod, inv, r2;
mod64() : n(0) {}
mod64(u64 x) : n(init(x)) {}
static u64 init(u64 w) { return reduce(u128(w) * r2); }
static void set_mod(u64 m) {
mod = inv = m;
for (int i = 0; i < 5; ++i) inv *= 2 - inv * m;
r2 = -u128(m) % m;
}
static u64 reduce(u128 x) {
u64 y = u64(x >> 64) - u64((u128(u64(x) * inv) * mod) >> 64);
return ll(y) < 0 ? y + mod : y;
};
mod64& operator+=(mod64 x) { n += x.n - mod; if(ll(n) < 0) n += mod; return *this; }
mod64 operator+(mod64 x) const { return mod64(*this) += x; }
mod64& operator*=(mod64 x) { n = reduce(u128(n) * x.n); return *this; }
mod64 operator*(mod64 x) const { return mod64(*this) *= x; }
u64 val() const { return reduce(n); }
};
u64 mod64::mod, mod64::inv, mod64::r2;
bool suspect(u64 a, u64 s, u64 d, u64 n){
mod64::set_mod(n);
mod64 x(1), xx(a), one(x), minusone(n-1);
while(d > 0){
if(d&1) x = x * xx;
xx = xx * xx;
d >>= 1;
}
if (x.n == one.n) return true;
for (int r = 0; r < s; ++r) {
if(x.n == minusone.n) return true;
x = x * x;
}
return false;
}
template<class T>
bool miller_rabin(T n){
if (n <= 1 || (n > 2 && n % 2 == 0)) return false;
u64 d = n - 1, s = 0;
while (!(d&1)) {++s; d >>= 1;}
static const u64 v[] = {2, 325, 9375, 28178, 450775, 9780504, 1795265022};
static const u64 v_small[] = {2, 7, 61};
if(n <= 4759123141LL){
for (auto &&p : v_small) {
if(p >= n) break;
if(!suspect(p, s, d, n)) return false;
}
}else {
for (auto &&p : v) {
if(p >= n) break;
if(!suspect(p, s, d, n)) return false;
}
}
return true;
}
template<typename T>
struct ExactDiv {
T t, i, val;
ExactDiv() {}
ExactDiv(T n) : t(T(-1) / n), i(mul_inv(n)) , val(n) {};
T mul_inv(T n) {
T x = n;
for (int i = 0; i < 5; ++i) x *= 2 - n * x;
return x;
}
bool divide(T n) const {
if(val == 2) return !(n & 1);
return n * this->i <= this->t;
}
};
vector<ExactDiv<u64>> get_prime(int n){
if(n <= 1) return vector<ExactDiv<u64>>();
vector<bool> is_prime(n+1, true);
vector<ExactDiv<u64>> prime;
is_prime[0] = is_prime[1] = false;
for (int i = 2; i <= n; ++i) {
if(is_prime[i]) prime.emplace_back(i);
for (auto &&j : prime){
if(i*j.val > n) break;
is_prime[i*j.val] = false;
if(j.divide(i)) break;
}
}
return prime;
}
const auto primes = get_prime(50000);
random_device rng;
template<class T>
T pollard_rho2(T n) {
uniform_int_distribution<T> ra(1, n-1);
mod64::set_mod(n);
while(true){
u64 c_ = ra(rng), g = 1, r = 1, m = 500;
while(c_ == n-2) c_ = ra(rng);
mod64 y(ra(rng)), xx(0), c(c_), ys(0), q(1);
while(g == 1){
xx.n = y.n;
for (int i = 1; i <= r; ++i) {
y *= y; y += c;
}
T k = 0; g = 1;
while(k < r && g == 1){
for (int i = 1; i <= (m > (r-k) ? (r-k) : m); ++i) {
ys.n = y.n;
y *= y; y += c;
u64 xxx = xx.val(), yyy = y.val();
q *= mod64(xxx > yyy ? xxx - yyy : yyy - xxx);
}
g = __gcd<ll>(q.val(), n);
k += m;
}
r *= 2;
}
if(g == n) g = 1;
while (g == 1){
ys *= ys; ys += c;
u64 xxx = xx.val(), yyy = ys.val();
g = __gcd<ll>(xxx > yyy ? xxx - yyy : yyy - xxx, n);
}
if (g != n && miller_rabin(g)) return g;
}
}
template<class T>
vector<T> prime_factor(T n, int d = 0){
vector<T> a, res;
if(!d) for (auto &&i : primes) {
while (i.divide(n)){
res.emplace_back(i.val);
n /= i.val;
}
}
while(n != 1){
if(miller_rabin(n)){
a.emplace_back(n);
break;
}
T x = pollard_rho2(n);
n /= x;
a.emplace_back(x);
}
for (auto &&i : a) {
if (miller_rabin(i)) {
res.emplace_back(i);
} else {
vector<T> b = prime_factor(i, d + 1);
for (auto &&j : b) res.emplace_back(j);
}
}
sort(res.begin(),res.end());
return res;
}
__attribute__((target("avx"), optimize("O3", "unroll-loops")))
i64 prime_pi(const i64 N) {
if (N <= 1) return 0;
if (N == 2) return 1;
const int v = isqrt(N);
int s = (v + 1) / 2;
vector<int> smalls(s); for (int i = 1; i < s; ++i) smalls[i] = i;
vector<int> roughs(s); for (int i = 0; i < s; ++i) roughs[i] = 2 * i + 1;
vector<i64> larges(s); for (int i = 0; i < s; ++i) larges[i] = (N / (2 * i + 1) - 1) / 2;
vector<bool> skip(v + 1);
const auto divide = [] (i64 n, i64 d) -> int { return double(n) / d; };
const auto half = [] (int n) -> int { return (n - 1) >> 1; };
int pc = 0;
for (int p = 3; p <= v; p += 2) if (!skip[p]) {
int q = p * p;
if (i64(q) * q > N) break;
skip[p] = true;
for (int i = q; i <= v; i += 2 * p) skip[i] = true;
int ns = 0;
for (int k = 0; k < s; ++k) {
int i = roughs[k];
if (skip[i]) continue;
i64 d = i64(i) * p;
larges[ns] = larges[k] - (d <= v ? larges[smalls[d >> 1] - pc] : smalls[half(divide(N, d))]) + pc;
roughs[ns++] = i;
}
s = ns;
for (int i = half(v), j = ((v / p) - 1) | 1; j >= p; j -= 2) {
int c = smalls[j >> 1] - pc;
for (int e = (j * p) >> 1; i >= e; --i) smalls[i] -= c;
}
++pc;
}
larges[0] += i64(s + 2 * (pc - 1)) * (s - 1) / 2;
for (int k = 1; k < s; ++k) larges[0] -= larges[k];
for (int l = 1; l < s; ++l) {
int q = roughs[l];
i64 M = N / q;
int e = smalls[half(M / q)] - pc;
if (e < l + 1) break;
i64 t = 0;
for (int k = l + 1; k <= e; ++k) t += smalls[half(divide(M, roughs[k]))];
larges[0] += t - i64(e - l) * (pc + l - 1);
}
return larges[0] + 1;
}
} // namespace primes
namespace fastio {
static constexpr int SZ = 1 << 17;
char ibuf[SZ], obuf[SZ];
int pil = 0, pir = 0, por = 0;
struct Pre {
char num[40000];
constexpr Pre() : num() {
for (int i = 0; i < 10000; i++) {
int n = i;
for (int j = 3; j >= 0; j--) {
num[i * 4 + j] = n % 10 + '0';
n /= 10;
}
}
}
} constexpr pre;
inline void load() {
memcpy(ibuf, ibuf + pil, pir - pil);
pir = pir - pil + fread(ibuf + pir - pil, 1, SZ - pir + pil, stdin);
pil = 0;
}
inline void flush() {
fwrite(obuf, 1, por, stdout);
por = 0;
}
inline void rd(char& c) { c = ibuf[pil++]; }
template <typename T>
inline void rd(T& x) {
if (pil + 32 > pir) load();
char c;
do
c = ibuf[pil++];
while (c < '-');
bool minus = 0;
if (c == '-') {
minus = 1;
c = ibuf[pil++];
}
x = 0;
while (c >= '0') {
x = x * 10 + (c & 15);
c = ibuf[pil++];
}
if (minus) x = -x;
}
inline void rd() {}
template <typename Head, typename... Tail>
inline void rd(Head& head, Tail&... tail) {
rd(head);
rd(tail...);
}
inline void wt(char c) { obuf[por++] = c; }
template <typename T>
inline void wt(T x) {
if (por > SZ - 32) flush();
if (!x) {
obuf[por++] = '0';
return;
}
if (x < 0) {
obuf[por++] = '-';
x = -x;
}
int i = 12;
char buf[16];
while (x >= 10000) {
memcpy(buf + i, pre.num + (x % 10000) * 4, 4);
x /= 10000;
i -= 4;
}
if (x < 100) {
if (x < 10) {
wt(char('0' + char(x)));
} else {
uint32_t q = (uint32_t(x) * 205) >> 11;
uint32_t r = uint32_t(x) - q * 10;
obuf[por + 0] = '0' + q;
obuf[por + 1] = '0' + r;
por += 2;
}
} else {
if (x < 1000) {
memcpy(obuf + por, pre.num + (x << 2) + 1, 3);
por += 3;
} else {
memcpy(obuf + por, pre.num + (x << 2), 4);
por += 4;
}
}
memcpy(obuf + por, buf + i + 4, 12 - i);
por += 12 - i;
}
inline void wt() {}
template <typename Head, typename... Tail>
inline void wt(Head head, Tail... tail) {
wt(head);
wt(tail...);
}
template <typename T>
inline void wtn(T x) {
wt(x, '\n');
}
struct Dummy {
Dummy() { atexit(flush); }
} dummy;
} // namespace fastio
using fastio::rd;
using fastio::wt;
using fastio::wtn;
int main() {
int n;
rd(n);
while(n--) {
i64 x;
rd(x);
wt(x);
wt(primes::miller_rabin<i64>(x) ? ' 1\n' : ' 0\n');
}
return 0;
}