結果
問題 | No.3030 ミラー・ラビン素数判定法のテスト |
ユーザー | こまる |
提出日時 | 2020-11-07 15:04:08 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 8,362 bytes |
コンパイル時間 | 2,701 ms |
コンパイル使用メモリ | 224,020 KB |
実行使用メモリ | 6,820 KB |
最終ジャッジ日時 | 2024-11-18 18:35:51 |
合計ジャッジ時間 | 2,932 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | WA | - |
testcase_01 | WA | - |
testcase_02 | WA | - |
testcase_03 | WA | - |
testcase_04 | WA | - |
testcase_05 | WA | - |
testcase_06 | WA | - |
testcase_07 | WA | - |
testcase_08 | WA | - |
testcase_09 | WA | - |
コンパイルメッセージ
main.cpp:354:39: warning: multi-character character constant [-Wmultichar] 354 | wt(primes::miller_rabin<i64>(x) ? ' 1\n' : ' 0\n'); | ^~~~~~ main.cpp:354:48: warning: multi-character character constant [-Wmultichar] 354 | wt(primes::miller_rabin<i64>(x) ? ' 1\n' : ' 0\n'); | ^~~~~~
ソースコード
#include <bits/stdc++.h> using namespace std; using u32 = uint_fast32_t; using u64 = uint_fast64_t; using u128 = __uint128_t; using i32 = int_fast32_t; using i64 = int_fast64_t; using i128 = __int128_t; int isqrt(i64 n) { return sqrtl(n); } namespace primes { using ll = long long; struct mod64 { u64 n; static u64 mod, inv, r2; mod64() : n(0) {} mod64(u64 x) : n(init(x)) {} static u64 init(u64 w) { return reduce(u128(w) * r2); } static void set_mod(u64 m) { mod = inv = m; for (int i = 0; i < 5; ++i) inv *= 2 - inv * m; r2 = -u128(m) % m; } static u64 reduce(u128 x) { u64 y = u64(x >> 64) - u64((u128(u64(x) * inv) * mod) >> 64); return ll(y) < 0 ? y + mod : y; }; mod64& operator+=(mod64 x) { n += x.n - mod; if(ll(n) < 0) n += mod; return *this; } mod64 operator+(mod64 x) const { return mod64(*this) += x; } mod64& operator*=(mod64 x) { n = reduce(u128(n) * x.n); return *this; } mod64 operator*(mod64 x) const { return mod64(*this) *= x; } u64 val() const { return reduce(n); } }; u64 mod64::mod, mod64::inv, mod64::r2; bool suspect(u64 a, u64 s, u64 d, u64 n){ mod64::set_mod(n); mod64 x(1), xx(a), one(x), minusone(n-1); while(d > 0){ if(d&1) x = x * xx; xx = xx * xx; d >>= 1; } if (x.n == one.n) return true; for (int r = 0; r < s; ++r) { if(x.n == minusone.n) return true; x = x * x; } return false; } template<class T> bool miller_rabin(T n){ if (n <= 1 || (n > 2 && n % 2 == 0)) return false; u64 d = n - 1, s = 0; while (!(d&1)) {++s; d >>= 1;} static const u64 v[] = {2, 325, 9375, 28178, 450775, 9780504, 1795265022}; static const u64 v_small[] = {2, 7, 61}; if(n <= 4759123141LL){ for (auto &&p : v_small) { if(p >= n) break; if(!suspect(p, s, d, n)) return false; } }else { for (auto &&p : v) { if(p >= n) break; if(!suspect(p, s, d, n)) return false; } } return true; } template<typename T> struct ExactDiv { T t, i, val; ExactDiv() {} ExactDiv(T n) : t(T(-1) / n), i(mul_inv(n)) , val(n) {}; T mul_inv(T n) { T x = n; for (int i = 0; i < 5; ++i) x *= 2 - n * x; return x; } bool divide(T n) const { if(val == 2) return !(n & 1); return n * this->i <= this->t; } }; vector<ExactDiv<u64>> get_prime(int n){ if(n <= 1) return vector<ExactDiv<u64>>(); vector<bool> is_prime(n+1, true); vector<ExactDiv<u64>> prime; is_prime[0] = is_prime[1] = false; for (int i = 2; i <= n; ++i) { if(is_prime[i]) prime.emplace_back(i); for (auto &&j : prime){ if(i*j.val > n) break; is_prime[i*j.val] = false; if(j.divide(i)) break; } } return prime; } const auto primes = get_prime(50000); random_device rng; template<class T> T pollard_rho2(T n) { uniform_int_distribution<T> ra(1, n-1); mod64::set_mod(n); while(true){ u64 c_ = ra(rng), g = 1, r = 1, m = 500; while(c_ == n-2) c_ = ra(rng); mod64 y(ra(rng)), xx(0), c(c_), ys(0), q(1); while(g == 1){ xx.n = y.n; for (int i = 1; i <= r; ++i) { y *= y; y += c; } T k = 0; g = 1; while(k < r && g == 1){ for (int i = 1; i <= (m > (r-k) ? (r-k) : m); ++i) { ys.n = y.n; y *= y; y += c; u64 xxx = xx.val(), yyy = y.val(); q *= mod64(xxx > yyy ? xxx - yyy : yyy - xxx); } g = __gcd<ll>(q.val(), n); k += m; } r *= 2; } if(g == n) g = 1; while (g == 1){ ys *= ys; ys += c; u64 xxx = xx.val(), yyy = ys.val(); g = __gcd<ll>(xxx > yyy ? xxx - yyy : yyy - xxx, n); } if (g != n && miller_rabin(g)) return g; } } template<class T> vector<T> prime_factor(T n, int d = 0){ vector<T> a, res; if(!d) for (auto &&i : primes) { while (i.divide(n)){ res.emplace_back(i.val); n /= i.val; } } while(n != 1){ if(miller_rabin(n)){ a.emplace_back(n); break; } T x = pollard_rho2(n); n /= x; a.emplace_back(x); } for (auto &&i : a) { if (miller_rabin(i)) { res.emplace_back(i); } else { vector<T> b = prime_factor(i, d + 1); for (auto &&j : b) res.emplace_back(j); } } sort(res.begin(),res.end()); return res; } __attribute__((target("avx"), optimize("O3", "unroll-loops"))) i64 prime_pi(const i64 N) { if (N <= 1) return 0; if (N == 2) return 1; const int v = isqrt(N); int s = (v + 1) / 2; vector<int> smalls(s); for (int i = 1; i < s; ++i) smalls[i] = i; vector<int> roughs(s); for (int i = 0; i < s; ++i) roughs[i] = 2 * i + 1; vector<i64> larges(s); for (int i = 0; i < s; ++i) larges[i] = (N / (2 * i + 1) - 1) / 2; vector<bool> skip(v + 1); const auto divide = [] (i64 n, i64 d) -> int { return double(n) / d; }; const auto half = [] (int n) -> int { return (n - 1) >> 1; }; int pc = 0; for (int p = 3; p <= v; p += 2) if (!skip[p]) { int q = p * p; if (i64(q) * q > N) break; skip[p] = true; for (int i = q; i <= v; i += 2 * p) skip[i] = true; int ns = 0; for (int k = 0; k < s; ++k) { int i = roughs[k]; if (skip[i]) continue; i64 d = i64(i) * p; larges[ns] = larges[k] - (d <= v ? larges[smalls[d >> 1] - pc] : smalls[half(divide(N, d))]) + pc; roughs[ns++] = i; } s = ns; for (int i = half(v), j = ((v / p) - 1) | 1; j >= p; j -= 2) { int c = smalls[j >> 1] - pc; for (int e = (j * p) >> 1; i >= e; --i) smalls[i] -= c; } ++pc; } larges[0] += i64(s + 2 * (pc - 1)) * (s - 1) / 2; for (int k = 1; k < s; ++k) larges[0] -= larges[k]; for (int l = 1; l < s; ++l) { int q = roughs[l]; i64 M = N / q; int e = smalls[half(M / q)] - pc; if (e < l + 1) break; i64 t = 0; for (int k = l + 1; k <= e; ++k) t += smalls[half(divide(M, roughs[k]))]; larges[0] += t - i64(e - l) * (pc + l - 1); } return larges[0] + 1; } } // namespace primes namespace fastio { static constexpr int SZ = 1 << 17; char ibuf[SZ], obuf[SZ]; int pil = 0, pir = 0, por = 0; struct Pre { char num[40000]; constexpr Pre() : num() { for (int i = 0; i < 10000; i++) { int n = i; for (int j = 3; j >= 0; j--) { num[i * 4 + j] = n % 10 + '0'; n /= 10; } } } } constexpr pre; inline void load() { memcpy(ibuf, ibuf + pil, pir - pil); pir = pir - pil + fread(ibuf + pir - pil, 1, SZ - pir + pil, stdin); pil = 0; } inline void flush() { fwrite(obuf, 1, por, stdout); por = 0; } inline void rd(char& c) { c = ibuf[pil++]; } template <typename T> inline void rd(T& x) { if (pil + 32 > pir) load(); char c; do c = ibuf[pil++]; while (c < '-'); bool minus = 0; if (c == '-') { minus = 1; c = ibuf[pil++]; } x = 0; while (c >= '0') { x = x * 10 + (c & 15); c = ibuf[pil++]; } if (minus) x = -x; } inline void rd() {} template <typename Head, typename... Tail> inline void rd(Head& head, Tail&... tail) { rd(head); rd(tail...); } inline void wt(char c) { obuf[por++] = c; } template <typename T> inline void wt(T x) { if (por > SZ - 32) flush(); if (!x) { obuf[por++] = '0'; return; } if (x < 0) { obuf[por++] = '-'; x = -x; } int i = 12; char buf[16]; while (x >= 10000) { memcpy(buf + i, pre.num + (x % 10000) * 4, 4); x /= 10000; i -= 4; } if (x < 100) { if (x < 10) { wt(char('0' + char(x))); } else { uint32_t q = (uint32_t(x) * 205) >> 11; uint32_t r = uint32_t(x) - q * 10; obuf[por + 0] = '0' + q; obuf[por + 1] = '0' + r; por += 2; } } else { if (x < 1000) { memcpy(obuf + por, pre.num + (x << 2) + 1, 3); por += 3; } else { memcpy(obuf + por, pre.num + (x << 2), 4); por += 4; } } memcpy(obuf + por, buf + i + 4, 12 - i); por += 12 - i; } inline void wt() {} template <typename Head, typename... Tail> inline void wt(Head head, Tail... tail) { wt(head); wt(tail...); } template <typename T> inline void wtn(T x) { wt(x, '\n'); } struct Dummy { Dummy() { atexit(flush); } } dummy; } // namespace fastio using fastio::rd; using fastio::wt; using fastio::wtn; int main() { int n; rd(n); while(n--) { i64 x; rd(x); wt(x); wt(primes::miller_rabin<i64>(x) ? ' 1\n' : ' 0\n'); } return 0; }