結果

問題 No.1302 Random Tree Score
ユーザー nok0nok0
提出日時 2020-11-09 11:29:22
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 663 ms / 3,000 ms
コード長 21,404 bytes
コンパイル時間 1,763 ms
コンパイル使用メモリ 109,088 KB
実行使用メモリ 8,668 KB
最終ジャッジ日時 2024-07-22 15:59:54
合計ジャッジ時間 7,431 ms
ジャッジサーバーID
(参考情報)
judge4 / judge2
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 3 ms
5,248 KB
testcase_01 AC 2 ms
5,376 KB
testcase_02 AC 117 ms
5,376 KB
testcase_03 AC 286 ms
6,288 KB
testcase_04 AC 109 ms
5,376 KB
testcase_05 AC 663 ms
8,624 KB
testcase_06 AC 534 ms
8,504 KB
testcase_07 AC 111 ms
5,376 KB
testcase_08 AC 322 ms
6,348 KB
testcase_09 AC 510 ms
8,544 KB
testcase_10 AC 555 ms
8,300 KB
testcase_11 AC 107 ms
5,376 KB
testcase_12 AC 618 ms
8,436 KB
testcase_13 AC 3 ms
5,376 KB
testcase_14 AC 512 ms
8,668 KB
testcase_15 AC 604 ms
8,548 KB
testcase_16 AC 2 ms
5,376 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#ifndef ATCODER_INTERNAL_MATH_HPP
#define ATCODER_INTERNAL_MATH_HPP 1

#include <utility>

namespace atcoder {

namespace internal {

// @param m `1 <= m`
// @return x mod m
constexpr long long safe_mod(long long x, long long m) {
	x %= m;
	if(x < 0) x += m;
	return x;
}

// Fast moduler by barrett reduction
// Reference: https://en.wikipedia.org/wiki/Barrett_reduction
// NOTE: reconsider after Ice Lake
struct barrett {
	unsigned int _m;
	unsigned long long im;

	// @param m `1 <= m`
	barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {}

	// @return m
	unsigned int umod() const { return _m; }

	// @param a `0 <= a < m`
	// @param b `0 <= b < m`
	// @return `a * b % m`
	unsigned int mul(unsigned int a, unsigned int b) const {
		// [1] m = 1
		// a = b = im = 0, so okay

		// [2] m >= 2
		// im = ceil(2^64 / m)
		// -> im * m = 2^64 + r (0 <= r < m)
		// let z = a*b = c*m + d (0 <= c, d < m)
		// a*b * im = (c*m + d) * im = c*(im*m) + d*im = c*2^64 + c*r + d*im
		// c*r + d*im < m * m + m * im < m * m + 2^64 + m <= 2^64 + m * (m + 1) < 2^64 * 2
		// ((ab * im) >> 64) == c or c + 1
		unsigned long long z = a;
		z *= b;
#ifdef _MSC_VER
		unsigned long long x;
		_umul128(z, im, &x);
#else
		unsigned long long x =
		    (unsigned long long)(((unsigned __int128)(z)*im) >> 64);
#endif
		unsigned int v = (unsigned int)(z - x * _m);
		if(_m <= v) v += _m;
		return v;
	}
};

// @param n `0 <= n`
// @param m `1 <= m`
// @return `(x ** n) % m`
constexpr long long pow_mod_constexpr(long long x, long long n, int m) {
	if(m == 1) return 0;
	unsigned int _m = (unsigned int)(m);
	unsigned long long r = 1;
	unsigned long long y = safe_mod(x, m);
	while(n) {
		if(n & 1) r = (r * y) % _m;
		y = (y * y) % _m;
		n >>= 1;
	}
	return r;
}

// Reference:
// M. Forisek and J. Jancina,
// Fast Primality Testing for Integers That Fit into a Machine Word
// @param n `0 <= n`
constexpr bool is_prime_constexpr(int n) {
	if(n <= 1) return false;
	if(n == 2 || n == 7 || n == 61) return true;
	if(n % 2 == 0) return false;
	long long d = n - 1;
	while(d % 2 == 0) d /= 2;
	for(long long a : {2, 7, 61}) {
		long long t = d;
		long long y = pow_mod_constexpr(a, t, n);
		while(t != n - 1 && y != 1 && y != n - 1) {
			y = y * y % n;
			t <<= 1;
		}
		if(y != n - 1 && t % 2 == 0) {
			return false;
		}
	}
	return true;
}
template <int n>
constexpr bool is_prime = is_prime_constexpr(n);

// @param b `1 <= b`
// @return pair(g, x) s.t. g = gcd(a, b), xa = g (mod b), 0 <= x < b/g
constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) {
	a = safe_mod(a, b);
	if(a == 0) return {b, 0};

	// Contracts:
	// [1] s - m0 * a = 0 (mod b)
	// [2] t - m1 * a = 0 (mod b)
	// [3] s * |m1| + t * |m0| <= b
	long long s = b, t = a;
	long long m0 = 0, m1 = 1;

	while(t) {
		long long u = s / t;
		s -= t * u;
		m0 -= m1 * u;  // |m1 * u| <= |m1| * s <= b

		// [3]:
		// (s - t * u) * |m1| + t * |m0 - m1 * u|
		// <= s * |m1| - t * u * |m1| + t * (|m0| + |m1| * u)
		// = s * |m1| + t * |m0| <= b

		auto tmp = s;
		s = t;
		t = tmp;
		tmp = m0;
		m0 = m1;
		m1 = tmp;
	}
	// by [3]: |m0| <= b/g
	// by g != b: |m0| < b/g
	if(m0 < 0) m0 += b / s;
	return {s, m0};
}

// Compile time primitive root
// @param m must be prime
// @return primitive root (and minimum in now)
constexpr int primitive_root_constexpr(int m) {
	if(m == 2) return 1;
	if(m == 167772161) return 3;
	if(m == 469762049) return 3;
	if(m == 754974721) return 11;
	if(m == 998244353) return 3;
	int divs[20] = {};
	divs[0] = 2;
	int cnt = 1;
	int x = (m - 1) / 2;
	while(x % 2 == 0) x /= 2;
	for(int i = 3; (long long)(i)*i <= x; i += 2) {
		if(x % i == 0) {
			divs[cnt++] = i;
			while(x % i == 0) {
				x /= i;
			}
		}
	}
	if(x > 1) {
		divs[cnt++] = x;
	}
	for(int g = 2;; g++) {
		bool ok = true;
		for(int i = 0; i < cnt; i++) {
			if(pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) {
				ok = false;
				break;
			}
		}
		if(ok) return g;
	}
}
template <int m>
constexpr int primitive_root = primitive_root_constexpr(m);

}  // namespace internal

}  // namespace atcoder

#endif  // ATCODER_INTERNAL_MATH_HPP

#ifndef ATCODER_INTERNAL_TYPE_TRAITS_HPP
#define ATCODER_INTERNAL_TYPE_TRAITS_HPP 1

#include <cassert>
#include <numeric>
#include <type_traits>

namespace atcoder {

namespace internal {

#ifndef _MSC_VER
template <class T>
using is_signed_int128 =
    typename std::conditional<std::is_same<T, __int128_t>::value ||
                                  std::is_same<T, __int128>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using is_unsigned_int128 =
    typename std::conditional<std::is_same<T, __uint128_t>::value ||
                                  std::is_same<T, unsigned __int128>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using make_unsigned_int128 =
    typename std::conditional<std::is_same<T, __int128_t>::value,
                              __uint128_t,
                              unsigned __int128>;

template <class T>
using is_integral = typename std::conditional<std::is_integral<T>::value ||
                                                  is_signed_int128<T>::value ||
                                                  is_unsigned_int128<T>::value,
                                              std::true_type,
                                              std::false_type>::type;

template <class T>
using is_signed_int = typename std::conditional<(is_integral<T>::value &&
                                                 std::is_signed<T>::value) ||
                                                    is_signed_int128<T>::value,
                                                std::true_type,
                                                std::false_type>::type;

template <class T>
using is_unsigned_int =
    typename std::conditional<(is_integral<T>::value &&
                               std::is_unsigned<T>::value) ||
                                  is_unsigned_int128<T>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using to_unsigned = typename std::conditional<
    is_signed_int128<T>::value,
    make_unsigned_int128<T>,
    typename std::conditional<std::is_signed<T>::value,
                              std::make_unsigned<T>,
                              std::common_type<T>>::type>::type;

#else

template <class T>
using is_integral = typename std::is_integral<T>;

template <class T>
using is_signed_int =
    typename std::conditional<is_integral<T>::value && std::is_signed<T>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using is_unsigned_int =
    typename std::conditional<is_integral<T>::value &&
                                  std::is_unsigned<T>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using to_unsigned = typename std::conditional<is_signed_int<T>::value,
                                              std::make_unsigned<T>,
                                              std::common_type<T>>::type;

#endif

template <class T>
using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>;

template <class T>
using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>;

template <class T>
using to_unsigned_t = typename to_unsigned<T>::type;

}  // namespace internal

}  // namespace atcoder

#endif  // ATCODER_INTERNAL_TYPE_TRAITS_HPP

#ifndef ATCODER_MODINT_HPP
#define ATCODER_MODINT_HPP 1

// #include <atcoder/internal_math>
// #include <atcoder/internal_type_traits>
#include <cassert>
#include <numeric>
#include <type_traits>

#ifdef _MSC_VER
#include <intrin.h>
#endif

namespace atcoder {

namespace internal {

struct modint_base {};
struct static_modint_base : modint_base {};

template <class T>
using is_modint = std::is_base_of<modint_base, T>;
template <class T>
using is_modint_t = std::enable_if_t<is_modint<T>::value>;

}  // namespace internal

template <int m, std::enable_if_t<(1 <= m)>* = nullptr>
struct static_modint : internal::static_modint_base {
	using mint = static_modint;

public:
	static constexpr int mod() { return m; }
	static mint raw(int v) {
		mint x;
		x._v = v;
		return x;
	}

	static_modint() : _v(0) {}
	template <class T, internal::is_signed_int_t<T>* = nullptr>
	static_modint(T v) {
		long long x = (long long)(v % (long long)(umod()));
		if(x < 0) x += umod();
		_v = (unsigned int)(x);
	}
	template <class T, internal::is_unsigned_int_t<T>* = nullptr>
	static_modint(T v) {
		_v = (unsigned int)(v % umod());
	}
	static_modint(bool v) { _v = ((unsigned int)(v) % umod()); }

	unsigned int val() const { return _v; }

	mint& operator++() {
		_v++;
		if(_v == umod()) _v = 0;
		return *this;
	}
	mint& operator--() {
		if(_v == 0) _v = umod();
		_v--;
		return *this;
	}
	mint operator++(int) {
		mint result = *this;
		++*this;
		return result;
	}
	mint operator--(int) {
		mint result = *this;
		--*this;
		return result;
	}

	mint& operator+=(const mint& rhs) {
		_v += rhs._v;
		if(_v >= umod()) _v -= umod();
		return *this;
	}
	mint& operator-=(const mint& rhs) {
		_v -= rhs._v;
		if(_v >= umod()) _v += umod();
		return *this;
	}
	mint& operator*=(const mint& rhs) {
		unsigned long long z = _v;
		z *= rhs._v;
		_v = (unsigned int)(z % umod());
		return *this;
	}
	mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }

	mint operator+() const { return *this; }
	mint operator-() const { return mint() - *this; }

	mint pow(long long n) const {
		assert(0 <= n);
		mint x = *this, r = 1;
		while(n) {
			if(n & 1) r *= x;
			x *= x;
			n >>= 1;
		}
		return r;
	}
	mint inv() const {
		if(prime) {
			assert(_v);
			return pow(umod() - 2);
		} else {
			auto eg = internal::inv_gcd(_v, m);
			assert(eg.first == 1);
			return eg.second;
		}
	}

	friend mint operator+(const mint& lhs, const mint& rhs) {
		return mint(lhs) += rhs;
	}
	friend mint operator-(const mint& lhs, const mint& rhs) {
		return mint(lhs) -= rhs;
	}
	friend mint operator*(const mint& lhs, const mint& rhs) {
		return mint(lhs) *= rhs;
	}
	friend mint operator/(const mint& lhs, const mint& rhs) {
		return mint(lhs) /= rhs;
	}
	friend bool operator==(const mint& lhs, const mint& rhs) {
		return lhs._v == rhs._v;
	}
	friend bool operator!=(const mint& lhs, const mint& rhs) {
		return lhs._v != rhs._v;
	}

private:
	unsigned int _v;
	static constexpr unsigned int umod() { return m; }
	static constexpr bool prime = internal::is_prime<m>;
};

template <int id>
struct dynamic_modint : internal::modint_base {
	using mint = dynamic_modint;

public:
	static int mod() { return (int)(bt.umod()); }
	static void set_mod(int m) {
		assert(1 <= m);
		bt = internal::barrett(m);
	}
	static mint raw(int v) {
		mint x;
		x._v = v;
		return x;
	}

	dynamic_modint() : _v(0) {}
	template <class T, internal::is_signed_int_t<T>* = nullptr>
	dynamic_modint(T v) {
		long long x = (long long)(v % (long long)(mod()));
		if(x < 0) x += mod();
		_v = (unsigned int)(x);
	}
	template <class T, internal::is_unsigned_int_t<T>* = nullptr>
	dynamic_modint(T v) {
		_v = (unsigned int)(v % mod());
	}
	dynamic_modint(bool v) { _v = ((unsigned int)(v) % mod()); }

	unsigned int val() const { return _v; }

	mint& operator++() {
		_v++;
		if(_v == umod()) _v = 0;
		return *this;
	}
	mint& operator--() {
		if(_v == 0) _v = umod();
		_v--;
		return *this;
	}
	mint operator++(int) {
		mint result = *this;
		++*this;
		return result;
	}
	mint operator--(int) {
		mint result = *this;
		--*this;
		return result;
	}

	mint& operator+=(const mint& rhs) {
		_v += rhs._v;
		if(_v >= umod()) _v -= umod();
		return *this;
	}
	mint& operator-=(const mint& rhs) {
		_v += mod() - rhs._v;
		if(_v >= umod()) _v -= umod();
		return *this;
	}
	mint& operator*=(const mint& rhs) {
		_v = bt.mul(_v, rhs._v);
		return *this;
	}
	mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }

	mint operator+() const { return *this; }
	mint operator-() const { return mint() - *this; }

	mint pow(long long n) const {
		assert(0 <= n);
		mint x = *this, r = 1;
		while(n) {
			if(n & 1) r *= x;
			x *= x;
			n >>= 1;
		}
		return r;
	}
	mint inv() const {
		auto eg = internal::inv_gcd(_v, mod());
		assert(eg.first == 1);
		return eg.second;
	}

	friend mint operator+(const mint& lhs, const mint& rhs) {
		return mint(lhs) += rhs;
	}
	friend mint operator-(const mint& lhs, const mint& rhs) {
		return mint(lhs) -= rhs;
	}
	friend mint operator*(const mint& lhs, const mint& rhs) {
		return mint(lhs) *= rhs;
	}
	friend mint operator/(const mint& lhs, const mint& rhs) {
		return mint(lhs) /= rhs;
	}
	friend bool operator==(const mint& lhs, const mint& rhs) {
		return lhs._v == rhs._v;
	}
	friend bool operator!=(const mint& lhs, const mint& rhs) {
		return lhs._v != rhs._v;
	}

private:
	unsigned int _v;
	static internal::barrett bt;
	static unsigned int umod() { return bt.umod(); }
};
template <int id>
internal::barrett dynamic_modint<id>::bt = 998244353;

using modint998244353 = static_modint<998244353>;
using modint1000000007 = static_modint<1000000007>;
using modint = dynamic_modint<-1>;

namespace internal {

template <class T>
using is_static_modint = std::is_base_of<internal::static_modint_base, T>;

template <class T>
using is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>;

template <class>
struct is_dynamic_modint : public std::false_type {};
template <int id>
struct is_dynamic_modint<dynamic_modint<id>> : public std::true_type {};

template <class T>
using is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>;

}  // namespace internal

}  // namespace atcoder

#endif  // ATCODER_MODINT_HPP

#ifndef ATCODER_INTERNAL_BITOP_HPP
#define ATCODER_INTERNAL_BITOP_HPP 1

#ifdef _MSC_VER
#include <intrin.h>
#endif

namespace atcoder {

namespace internal {

// @param n `0 <= n`
// @return minimum non-negative `x` s.t. `n <= 2**x`
int ceil_pow2(int n) {
	int x = 0;
	while((1U << x) < (unsigned int)(n)) x++;
	return x;
}

// @param n `1 <= n`
// @return minimum non-negative `x` s.t. `(n & (1 << x)) != 0`
int bsf(unsigned int n) {
#ifdef _MSC_VER
	unsigned long index;
	_BitScanForward(&index, n);
	return index;
#else
	return __builtin_ctz(n);
#endif
}

}  // namespace internal

}  // namespace atcoder

#endif  // ATCODER_INTERNAL_BITOP_HPP

#ifndef ATCODER_CONVOLUTION_HPP
#define ATCODER_CONVOLUTION_HPP 1

#include <algorithm>
#include <array>
// #include <atcoder/internal_bit>
// #include <atcoder/modint>
#include <cassert>
#include <type_traits>
#include <vector>

namespace atcoder {

namespace internal {

template <class mint, internal::is_static_modint_t<mint>* = nullptr>
void butterfly(std::vector<mint>& a) {
	static constexpr int g = internal::primitive_root<mint::mod()>;
	int n = int(a.size());
	int h = internal::ceil_pow2(n);

	static bool first = true;
	static mint sum_e[30];  // sum_e[i] = ies[0] * ... * ies[i - 1] * es[i]
	if(first) {
		first = false;
		mint es[30], ies[30];  // es[i]^(2^(2+i)) == 1
		int cnt2 = bsf(mint::mod() - 1);
		mint e = mint(g).pow((mint::mod() - 1) >> cnt2), ie = e.inv();
		for(int i = cnt2; i >= 2; i--) {
			// e^(2^i) == 1
			es[i - 2] = e;
			ies[i - 2] = ie;
			e *= e;
			ie *= ie;
		}
		mint now = 1;
		for(int i = 0; i < cnt2 - 2; i++) {
			sum_e[i] = es[i] * now;
			now *= ies[i];
		}
	}
	for(int ph = 1; ph <= h; ph++) {
		int w = 1 << (ph - 1), p = 1 << (h - ph);
		mint now = 1;
		for(int s = 0; s < w; s++) {
			int offset = s << (h - ph + 1);
			for(int i = 0; i < p; i++) {
				auto l = a[i + offset];
				auto r = a[i + offset + p] * now;
				a[i + offset] = l + r;
				a[i + offset + p] = l - r;
			}
			now *= sum_e[bsf(~(unsigned int)(s))];
		}
	}
}

template <class mint, internal::is_static_modint_t<mint>* = nullptr>
void butterfly_inv(std::vector<mint>& a) {
	static constexpr int g = internal::primitive_root<mint::mod()>;
	int n = int(a.size());
	int h = internal::ceil_pow2(n);

	static bool first = true;
	static mint sum_ie[30];  // sum_ie[i] = es[0] * ... * es[i - 1] * ies[i]
	if(first) {
		first = false;
		mint es[30], ies[30];  // es[i]^(2^(2+i)) == 1
		int cnt2 = bsf(mint::mod() - 1);
		mint e = mint(g).pow((mint::mod() - 1) >> cnt2), ie = e.inv();
		for(int i = cnt2; i >= 2; i--) {
			// e^(2^i) == 1
			es[i - 2] = e;
			ies[i - 2] = ie;
			e *= e;
			ie *= ie;
		}
		mint now = 1;
		for(int i = 0; i < cnt2 - 2; i++) {
			sum_ie[i] = ies[i] * now;
			now *= es[i];
		}
	}

	for(int ph = h; ph >= 1; ph--) {
		int w = 1 << (ph - 1), p = 1 << (h - ph);
		mint inow = 1;
		for(int s = 0; s < w; s++) {
			int offset = s << (h - ph + 1);
			for(int i = 0; i < p; i++) {
				auto l = a[i + offset];
				auto r = a[i + offset + p];
				a[i + offset] = l + r;
				a[i + offset + p] =
				    (unsigned long long)(mint::mod() + l.val() - r.val()) *
				    inow.val();
			}
			inow *= sum_ie[bsf(~(unsigned int)(s))];
		}
	}
}

}  // namespace internal

template <class mint, internal::is_static_modint_t<mint>* = nullptr>
std::vector<mint> convolution(std::vector<mint> a, std::vector<mint> b) {
	int n = int(a.size()), m = int(b.size());
	if(!n || !m) return {};
	if(std::min(n, m) <= 60) {
		if(n < m) {
			std::swap(n, m);
			std::swap(a, b);
		}
		std::vector<mint> ans(n + m - 1);
		for(int i = 0; i < n; i++) {
			for(int j = 0; j < m; j++) {
				ans[i + j] += a[i] * b[j];
			}
		}
		return ans;
	}
	int z = 1 << internal::ceil_pow2(n + m - 1);
	a.resize(z);
	internal::butterfly(a);
	b.resize(z);
	internal::butterfly(b);
	for(int i = 0; i < z; i++) {
		a[i] *= b[i];
	}
	internal::butterfly_inv(a);
	a.resize(n + m - 1);
	mint iz = mint(z).inv();
	for(int i = 0; i < n + m - 1; i++) a[i] *= iz;
	return a;
}

template <unsigned int mod = 998244353,
          class T,
          std::enable_if_t<internal::is_integral<T>::value>* = nullptr>
std::vector<T> convolution(const std::vector<T>& a, const std::vector<T>& b) {
	int n = int(a.size()), m = int(b.size());
	if(!n || !m) return {};

	using mint = static_modint<mod>;
	std::vector<mint> a2(n), b2(m);
	for(int i = 0; i < n; i++) {
		a2[i] = mint(a[i]);
	}
	for(int i = 0; i < m; i++) {
		b2[i] = mint(b[i]);
	}
	auto c2 = convolution(move(a2), move(b2));
	std::vector<T> c(n + m - 1);
	for(int i = 0; i < n + m - 1; i++) {
		c[i] = c2[i].val();
	}
	return c;
}

std::vector<long long> convolution_ll(const std::vector<long long>& a,
                                      const std::vector<long long>& b) {
	int n = int(a.size()), m = int(b.size());
	if(!n || !m) return {};

	static constexpr unsigned long long MOD1 = 754974721;  // 2^24
	static constexpr unsigned long long MOD2 = 167772161;  // 2^25
	static constexpr unsigned long long MOD3 = 469762049;  // 2^26
	static constexpr unsigned long long M2M3 = MOD2 * MOD3;
	static constexpr unsigned long long M1M3 = MOD1 * MOD3;
	static constexpr unsigned long long M1M2 = MOD1 * MOD2;
	static constexpr unsigned long long M1M2M3 = MOD1 * MOD2 * MOD3;

	static constexpr unsigned long long i1 =
	    internal::inv_gcd(MOD2 * MOD3, MOD1).second;
	static constexpr unsigned long long i2 =
	    internal::inv_gcd(MOD1 * MOD3, MOD2).second;
	static constexpr unsigned long long i3 =
	    internal::inv_gcd(MOD1 * MOD2, MOD3).second;

	auto c1 = convolution<MOD1>(a, b);
	auto c2 = convolution<MOD2>(a, b);
	auto c3 = convolution<MOD3>(a, b);

	std::vector<long long> c(n + m - 1);
	for(int i = 0; i < n + m - 1; i++) {
		unsigned long long x = 0;
		x += (c1[i] * i1) % MOD1 * M2M3;
		x += (c2[i] * i2) % MOD2 * M1M3;
		x += (c3[i] * i3) % MOD3 * M1M2;
		// B = 2^63, -B <= x, r(real value) < B
		// (x, x - M, x - 2M, or x - 3M) = r (mod 2B)
		// r = c1[i] (mod MOD1)
		// focus on MOD1
		// r = x, x - M', x - 2M', x - 3M' (M' = M % 2^64) (mod 2B)
		// r = x,
		//     x - M' + (0 or 2B),
		//     x - 2M' + (0, 2B or 4B),
		//     x - 3M' + (0, 2B, 4B or 6B) (without mod!)
		// (r - x) = 0, (0)
		//           - M' + (0 or 2B), (1)
		//           -2M' + (0 or 2B or 4B), (2)
		//           -3M' + (0 or 2B or 4B or 6B) (3) (mod MOD1)
		// we checked that
		//   ((1) mod MOD1) mod 5 = 2
		//   ((2) mod MOD1) mod 5 = 3
		//   ((3) mod MOD1) mod 5 = 4
		long long diff =
		    c1[i] - internal::safe_mod((long long)(x), (long long)(MOD1));
		if(diff < 0) diff += MOD1;
		static constexpr unsigned long long offset[5] = {
		    0, 0, M1M2M3, 2 * M1M2M3, 3 * M1M2M3};
		x -= offset[diff % 5];
		c[i] = x;
	}

	return c;
}

}  // namespace atcoder

#endif  // ATCODER_CONVOLUTION_HPP

#include <iostream>
#include <vector>
using mint = atcoder::modint998244353;

int main() {
	const int fac_max = 100000;
	std::vector<mint> fac(fac_max + 1);
	fac[0] = 1;
	for(int i = 0; i < fac_max; i++) { fac[i + 1] = fac[i] * (i + 1); }

	int n;
	std::cin >> n;

	std::vector<mint> f(n - 1);
	for(int i = 0; i < n - 1; i++) { f[i] = mint(i + 1) / fac[i]; }

	int k = n;
	std::vector<mint> ret(n - 1, 0);
	ret[0] = 1;
	while(k) {
		if(k & 1) {
			ret = atcoder::convolution(ret, f);
			ret.resize(n - 1);
		}
		f = atcoder::convolution(f, f);
		f.resize(n - 1);
		k >>= 1;
	}

	mint div = n;
	div = div.pow(n - 2);
	mint res = ret[n - 2] * fac[n - 2] / div;

	std::cout << res.val() << '\n';

	return 0;
}
0