結果

問題 No.1259 スイッチ
ユーザー kaagekaage
提出日時 2020-11-10 00:15:30
言語 C++14
(gcc 12.3.0 + boost 1.83.0)
結果
WA  
実行時間 -
コード長 9,338 bytes
コンパイル時間 1,226 ms
コンパイル使用メモリ 126,868 KB
実行使用メモリ 19,004 KB
最終ジャッジ日時 2024-07-22 17:04:35
合計ジャッジ時間 3,714 ms
ジャッジサーバーID
(参考情報)
judge3 / judge1
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
6,816 KB
testcase_01 AC 2 ms
6,944 KB
testcase_02 AC 2 ms
6,940 KB
testcase_03 AC 2 ms
6,944 KB
testcase_04 AC 2 ms
6,944 KB
testcase_05 AC 2 ms
6,944 KB
testcase_06 AC 2 ms
6,940 KB
testcase_07 AC 2 ms
6,940 KB
testcase_08 AC 2 ms
6,940 KB
testcase_09 AC 1 ms
6,940 KB
testcase_10 WA -
testcase_11 WA -
testcase_12 WA -
testcase_13 WA -
testcase_14 WA -
testcase_15 WA -
testcase_16 WA -
testcase_17 WA -
testcase_18 WA -
testcase_19 WA -
testcase_20 WA -
testcase_21 WA -
testcase_22 WA -
testcase_23 WA -
testcase_24 WA -
testcase_25 WA -
testcase_26 WA -
testcase_27 WA -
testcase_28 WA -
testcase_29 WA -
testcase_30 WA -
testcase_31 WA -
testcase_32 WA -
testcase_33 WA -
testcase_34 WA -
testcase_35 WA -
testcase_36 WA -
testcase_37 WA -
testcase_38 WA -
testcase_39 WA -
testcase_40 WA -
testcase_41 WA -
testcase_42 WA -
testcase_43 WA -
testcase_44 WA -
testcase_45 WA -
testcase_46 WA -
testcase_47 WA -
testcase_48 WA -
testcase_49 WA -
testcase_50 WA -
testcase_51 WA -
testcase_52 WA -
testcase_53 WA -
testcase_54 WA -
testcase_55 WA -
testcase_56 WA -
testcase_57 WA -
testcase_58 WA -
testcase_59 WA -
testcase_60 WA -
権限があれば一括ダウンロードができます

ソースコード

diff #

#line 2 "library/other/template.hpp"
#define _CRT_SECURE_NO_WARNINGS
#pragma target("avx2")
#pragma optimize("O3")
#pragma optimize("unroll-loops")
#include <algorithm>
#include <bitset>
#include <cassert>
#include <cfloat>
#include <climits>
#include <cmath>
#include <complex>
#include <ctime>
#include <deque>
#include <fstream>
#include <functional>
#include <iomanip>
#include <iostream>
#include <iterator>
#include <list>
#include <map>
#include <memory>
#include <queue>
#include <random>
#include <set>
#include <stack>
#include <string>
#include <string.h>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>
#define rep(i,n) for(int i=0;i<(n);i++)
#define REP(i,n) for(int i=1;i<=(n);i++)
#define all(V) V.begin(),V.end()
typedef unsigned int uint;
typedef long long lint;
typedef unsigned long long ulint;
typedef std::pair<int, int> P;
typedef std::pair<lint, lint> LP;
constexpr int INF = INT_MAX/2;
constexpr lint LINF = LLONG_MAX/2;
constexpr double eps = DBL_EPSILON;
constexpr double PI=3.141592653589793238462643383279;
template<class T>
class prique :public std::priority_queue<T, std::vector<T>, std::greater<T>> {};
template <class T, class U>
inline bool chmax(T& lhs, const U& rhs) {
	if (lhs < rhs) {
		lhs = rhs;
		return 1;
	}
	return 0;
}
template <class T, class U>
inline bool chmin(T& lhs, const U& rhs) {
	if (lhs > rhs) {
		lhs = rhs;
		return 1;
	}
	return 0;
}
inline lint gcd(lint a, lint b) {
	while (b) {
		lint c = a;
		a = b; b = c % b;
	}
	return a;
}
inline lint lcm(lint a, lint b) {
	return a / gcd(a, b) * b;
}
bool isprime(lint n) {
	if (n == 1)return false;
	for (int i = 2; i * i <= n; i++) {
		if (n % i == 0)return false;
	}
	return true;
}
template<typename T>
T mypow(T a, lint b) {
	T res(1);
	while(b){
		if(b&1)res*=a;
		a*=a;
		b>>=1;
	}
	return res;
}
lint modpow(lint a, lint b, lint m) {
	lint res(1);
	while(b){
		if(b&1){
			res*=a;res%=m;
		}
		a*=a;a%=m;
		b>>=1;
	}
	return res;
}
template<typename T>
void printArray(std::vector<T>& vec) {
	rep(i, vec.size()){
		std::cout << vec[i];
		std::cout<<(i==(int)vec.size()-1?"\n":" ");
	}
}
template<typename T>
void printArray(T l, T r) {
	T rprev = std::prev(r);
	for (T i = l; i != rprev; i++) {
		std::cout << *i << " ";
	}
	std::cout << *rprev << std::endl;
}
LP extGcd(lint a,lint b) {
	if(b==0)return {1,0};
	LP s=extGcd(b,a%b);
	std::swap(s.first,s.second);
	s.second-=a/b*s.first;
	return s;
}
LP ChineseRem(const lint& b1,const lint& m1,const lint& b2,const lint& m2) {
	lint p=extGcd(m1,m2).first;
	lint tmp=(b2-b1)*p%m2;
	lint r=(b1+m1*tmp+m1*m2)%(m1*m2);
	return std::make_pair(r,m1*m2);
}
template<typename F>
inline constexpr decltype(auto) lambda_fix(F&& f){
	return [f=std::forward<F>(f)](auto&&... args){
		return f(f,std::forward<decltype(args)>(args)...);
	};
}
#line 3 "library/algebraic/DynamicModInt.hpp"
class DynamicModInt {
	lint value;
public:
	static unsigned int modulo;
	DynamicModInt() : value(0) {}
	template<typename T>
	DynamicModInt(T value = 0) : value(value) {
		if (value < 0)value = -(lint)(-value % modulo) + modulo;
		this->value = value % modulo;
	}
	static inline void setMod(const unsigned int& mod){modulo=mod;}
	inline DynamicModInt inv()const{return mypow(*this,modulo-2);}
	inline operator int()const { return value; }
	inline DynamicModInt& operator+=(const DynamicModInt& x) {
		value += x.value;
		if (value >= modulo)value -= modulo;
		return *this;
	}
	inline DynamicModInt& operator++() {
		if (value == modulo - 1)value = 0;
		else value++;
		return *this;
	}
	inline DynamicModInt operator++(int){
		DynamicModInt res=*this;
		--*this;
		return res;
	}
	inline DynamicModInt operator-()const {
		return DynamicModInt(0) -= *this;
	}
	inline DynamicModInt& operator-=(const DynamicModInt& x) {
		value -= x.value;
		if (value < 0)value += modulo;
		return *this;
	}
	inline DynamicModInt& operator--() {
		if (value == 0)value = modulo - 1;
		else value--;
		return *this;
	}
	inline DynamicModInt operator--(int){
		DynamicModInt res=*this;
		--*this;
		return res;
	}
	inline DynamicModInt& operator*=(const DynamicModInt& x) {
		value = value * x.value % modulo;
		return *this;
	}
	inline DynamicModInt& operator/=(const DynamicModInt& rhs) {
		return *this*=rhs.inv();
	}
	template<typename T> DynamicModInt operator+(const T& rhs)const { return DynamicModInt(*this) += rhs; }
	template<typename T> DynamicModInt& operator+=(const T& rhs) { return operator+=(DynamicModInt(rhs)); }
	template<typename T> DynamicModInt operator-(const T& rhs)const { return DynamicModInt(*this) -= rhs; }
	template<typename T> DynamicModInt& operator-=(const T& rhs) { return operator-=(DynamicModInt(rhs)); }
	template<typename T> DynamicModInt operator*(const T& rhs)const { return DynamicModInt(*this) *= rhs; }
	template<typename T> DynamicModInt& operator*=(const T& rhs) { return operator*=(DynamicModInt(rhs)); }
	template<typename T> DynamicModInt operator/(const T& rhs)const { return DynamicModInt(*this) /= rhs; }
	template<typename T> DynamicModInt& operator/=(const T& rhs) { return operator/=(DynamicModInt(rhs)); }
};
unsigned int DynamicModInt::modulo=1000000007;
std::istream& operator>>(std::istream& ist, DynamicModInt& x) {
	lint a;
	ist >> a;
	x = a;
	return ist;
}
#line 4 "library/algebraic/StaticModInt.hpp"
template<unsigned int modulo>
class StaticModInt {
	lint value;
public:
	static constexpr unsigned int mod_value = modulo;
	StaticModInt() : value(0) {}
	template<typename T>
	StaticModInt(T value = 0) : value(value) {
		if (value < 0)value = -(lint)(-value % modulo) + modulo;
		this->value = value % modulo;
	}
	inline StaticModInt inv()const{return mypow(*this,modulo-2);}
	inline operator int()const { return value; }
	inline StaticModInt& operator+=(const StaticModInt& x) {
		value += x.value;
		if (value >= modulo)value -= modulo;
		return *this;
	}
	inline StaticModInt& operator++() {
		if (value == modulo - 1)value = 0;
		else value++;
		return *this;
	}
	inline StaticModInt operator++(int){
		StaticModInt res=*this;
		--*this;
		return res;
	}
	inline StaticModInt operator-()const {
		return StaticModInt(0) -= *this;
	}
	inline StaticModInt& operator-=(const StaticModInt& x) {
		value -= x.value;
		if (value < 0)value += modulo;
		return *this;
	}
	inline StaticModInt& operator--() {
		if (value == 0)value = modulo - 1;
		else value--;
		return *this;
	}
	inline StaticModInt operator--(int){
		StaticModInt res=*this;
		--*this;
		return res;
	}
	inline StaticModInt& operator*=(const StaticModInt& x) {
		value = value * x.value % modulo;
		return *this;
	}
	inline StaticModInt& operator/=(const StaticModInt& rhs) {
		return *this*=rhs.inv();
	}
	template<typename T> StaticModInt operator+(const T& rhs)const { return StaticModInt(*this) += rhs; }
	template<typename T> StaticModInt& operator+=(const T& rhs) { return operator+=(StaticModInt(rhs)); }
	template<typename T> StaticModInt operator-(const T& rhs)const { return StaticModInt(*this) -= rhs; }
	template<typename T> StaticModInt& operator-=(const T& rhs) { return operator-=(StaticModInt(rhs)); }
	template<typename T> StaticModInt operator*(const T& rhs)const { return StaticModInt(*this) *= rhs; }
	template<typename T> StaticModInt& operator*=(const T& rhs) { return operator*=(StaticModInt(rhs)); }
	template<typename T> StaticModInt operator/(const T& rhs)const { return StaticModInt(*this) /= rhs; }
	template<typename T> StaticModInt& operator/=(const T& rhs) { return operator/=(StaticModInt(rhs)); }
};
template<unsigned int modulo>
std::istream& operator>>(std::istream& ist, StaticModInt<modulo>& x) {
	lint a;
	ist >> a;
	x = a;
	return ist;
}
#line 5 "library/algebraic/Combinatorics.hpp"
template<typename T>
class Combinatorics{
protected:
	std::vector<T> factorial;
	void append(int n)noexcept{
		while(factorial.size()<=n){
			factorial.emplace_back(factorial.back()*factorial.size());
		}
	}
public:
	Combinatorics()noexcept:factorial(1,1){}
	Combinatorics(int n)noexcept:factorial(1,1){append(n);}
	virtual T getComb(int a,int b)noexcept{
		append(a);
		return factorial[a]/factorial[a-b]/factorial[b];
	}
	virtual T getDcomb(int a,int b)noexcept{
		return getComb(a+b-1,b);
	}
};
template<typename T>
class ModCombinatorics:Combinatorics<T>{
	static_assert(std::is_same<T,StaticModInt<T::mod_value>>::value
		||std::is_same<T,DynamicModInt>::value);
	using Combinatorics<T>::factorial;
	std::vector<T> inv;
	void append(int n)noexcept{
		int tmp=factorial.size();
		if(n<tmp)return;
		Combinatorics<T>::append(n);
		inv.resize(n+1);
		inv[n]=T(1)/factorial.back();
		for(int i=n;i>tmp;i--)inv[i-1]=inv[i]*i;
	}
public:
	ModCombinatorics()noexcept:Combinatorics<T>(),inv(1,1){}
	ModCombinatorics(int n)noexcept:Combinatorics<T>(n),inv(1,1){append(n);}
	T getComb(int a,int b)noexcept override{
		append(a);
		return factorial[a]*inv[a-b]*inv[b];
	}
	T getDcomb(int a,int b)noexcept override{
		return getComb(a+b-1,b);
	}
	T perm(int a,int b)noexcept{
		append(a);
		return factorial[a]*inv[a-b];
	}
};
#line 4 "main.cpp"
using ModInt=StaticModInt<1000000007>;
ModInt N,K,M;
int main(){
	std::cin>>N>>K>>M;
	ModInt cnt=0;
	ModCombinatorics<ModInt> mc;
	REP(i,std::min(K,N)){
		if(K%i==0)cnt+=mc.perm(N-1,i-1)*mypow(N,N-i);
	}
	if(M==1)std::cout<<cnt<<std::endl;
	else std::cout<<(mypow(N,N)-cnt)/(N-1)<<std::endl;
}
0