結果
問題 | No.526 フィボナッチ数列の第N項をMで割った余りを求める |
ユーザー |
|
提出日時 | 2020-11-10 17:10:59 |
言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 2 ms / 2,000 ms |
コード長 | 1,214 bytes |
コンパイル時間 | 910 ms |
コンパイル使用メモリ | 87,724 KB |
実行使用メモリ | 5,376 KB |
最終ジャッジ日時 | 2024-07-22 17:35:55 |
合計ジャッジ時間 | 1,484 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge2 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 12 |
ソースコード
#include <iostream> #include <vector> #include <queue> #include <map> #include <string> #include <algorithm> #include <cmath> using ll = long long; #define rep(i, n) for (ll i = 0; i < (n); i++) #define rep2(i, s, n) for (ll i = s; i < (n); i++) using namespace std; using vec = vector<ll>; using mat = vector<vector<ll>>; class matpow { ll m, MOD; // 遷移行列のサイズ, mod // DPの更新 vec matmul(vec &dp, mat &mt){ vec ret(m, 0); rep(i, m)rep(j, m){ ret[i] += mt[i][j] * dp[j]; ret[i] %= MOD; } return ret; } // 遷移行列の更新 mat update(mat &mt){ mat ret(m, vec(m,0)); rep(i, m)rep(j, m)rep(k, m){ ret[i][j] += mt[i][k] * mt[k][j]; ret[i][j] %= MOD; } return ret; } public: // 行列の大きさはm×m matpow(ll m, ll MOD) : m(m), MOD(MOD) {}; void calc(vec &dp, mat &mt, ll k){ while(k){ if (k&1) dp = matmul(dp,mt); mt = update(mt); k /= 2; } } }; int main(){ ll n, m; cin >> n >> m; vec dp(2); mat mt(2, vec(2)); dp[0] = dp[1] = 1; mt[0][0] = mt[0][1] = mt[1][0] = 1; mt[1][1] = 0; matpow mp(2, m); mp.calc(dp,mt,n-2); cout << dp[1] << endl; return 0; }