結果
問題 | No.1301 Strange Graph Shortest Path |
ユーザー | zkou |
提出日時 | 2020-11-10 20:40:13 |
言語 | PyPy3 (7.3.15) |
結果 |
AC
|
実行時間 | 2,614 ms / 3,000 ms |
コード長 | 4,478 bytes |
コンパイル時間 | 459 ms |
コンパイル使用メモリ | 82,160 KB |
実行使用メモリ | 309,556 KB |
最終ジャッジ日時 | 2024-09-13 00:45:32 |
合計ジャッジ時間 | 65,281 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge4 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 40 ms
54,236 KB |
testcase_01 | AC | 40 ms
54,536 KB |
testcase_02 | AC | 1,969 ms
298,728 KB |
testcase_03 | AC | 1,682 ms
269,280 KB |
testcase_04 | AC | 2,384 ms
308,948 KB |
testcase_05 | AC | 1,869 ms
298,580 KB |
testcase_06 | AC | 2,351 ms
293,268 KB |
testcase_07 | AC | 2,267 ms
294,240 KB |
testcase_08 | AC | 1,854 ms
270,840 KB |
testcase_09 | AC | 1,612 ms
279,984 KB |
testcase_10 | AC | 1,564 ms
272,264 KB |
testcase_11 | AC | 1,898 ms
298,468 KB |
testcase_12 | AC | 1,948 ms
299,568 KB |
testcase_13 | AC | 1,822 ms
300,120 KB |
testcase_14 | AC | 2,423 ms
278,628 KB |
testcase_15 | AC | 1,628 ms
280,804 KB |
testcase_16 | AC | 2,233 ms
309,556 KB |
testcase_17 | AC | 2,303 ms
303,476 KB |
testcase_18 | AC | 2,174 ms
287,628 KB |
testcase_19 | AC | 1,610 ms
295,368 KB |
testcase_20 | AC | 2,032 ms
292,936 KB |
testcase_21 | AC | 1,999 ms
300,732 KB |
testcase_22 | AC | 2,202 ms
297,712 KB |
testcase_23 | AC | 1,755 ms
301,272 KB |
testcase_24 | AC | 2,296 ms
294,444 KB |
testcase_25 | AC | 2,188 ms
306,996 KB |
testcase_26 | AC | 2,044 ms
295,136 KB |
testcase_27 | AC | 1,691 ms
297,996 KB |
testcase_28 | AC | 1,696 ms
290,856 KB |
testcase_29 | AC | 2,614 ms
309,020 KB |
testcase_30 | AC | 1,847 ms
305,172 KB |
testcase_31 | AC | 2,086 ms
305,136 KB |
testcase_32 | AC | 40 ms
54,168 KB |
testcase_33 | AC | 1,209 ms
303,024 KB |
testcase_34 | AC | 1,716 ms
289,744 KB |
ソースコード
import sys import heapq input = sys.stdin.readline class mcf_graph_int_cost: """ 頂点数、及び、costの総和が、4294967295 (== (1 << 32) - 1) を超えない前提下での高速な実装。 どちらかが超えると動きません。ごめんなさい。 """ def __init__(self, n): self.n = n self.pos = [] self.g = [[] for _ in range(n)] def add_edge(self, from_, to, cap, cost): # assert 0 <= from_ < self.n # assert 0 <= to < self.n m = len(self.pos) self.pos.append((from_, len(self.g[from_]))) self.g[from_].append(self.__class__._edge(to, len(self.g[to]), cap, cost)) self.g[to].append(self.__class__._edge(from_, len(self.g[from_]) - 1, 0, -cost)) return m class edge: def __init__(self, from_, to, cap, flow, cost): self.from_ = from_ self.to = to self.cap = cap self.flow = flow self.cost = cost def get_edge(self, i): _e = self.g[self.pos[i][0]][self.pos[i][1]] _re = self.g[_e.to][_e.rev] return self.__class__.edge(self.pos[i][0], _e.to, _e.cap + _re.cap, _re.cap, _e.cost) def edges(self): ret = [] for i in range(len(self.pos)): _e = self.g[self.pos[i][0]][self.pos[i][1]] _re = self.g[_e.to][_e.rev] ret.append(self.__class__.edge(self.pos[i][0], _e.to, _e.cap + _re.cap, _re.cap, _e.cost)) return ret def _dual_ref(self, s, t): self.dist = [0xFFFFFFFFFFFFFFFF] * self.n self.pv = [-1] * self.n self.pe = [-1] * self.n self.vis = [False] * self.n que = [s] # s == (0 << 32) + s self.dist[s] = 0 while que: v = heapq.heappop(que) & 4294967295 if self.vis[v]: continue self.vis[v] = True if v == t: break for i in range(len(self.g[v])): e = self.g[v][i] if self.vis[e.to] or e.cap == 0: continue cost = e.cost - self.dual[e.to] + self.dual[v] if self.dist[e.to] > self.dist[v] + cost: self.dist[e.to] = self.dist[v] + cost self.pv[e.to] = v self.pe[e.to] = i heapq.heappush(que, ((self.dist[e.to] << 32) + e.to)) if not self.vis[t]: return False for v in range(self.n): if not self.vis[v]: continue self.dual[v] -= self.dist[t] - self.dist[v] return True def slope(self, s, t, flow_limit=0xFFFFFFFFFFFFFFFF): # assert 0 <= s < self.n # assert 0 <= t < self.n # assert s != t self.dual = [0] * self.n self.dist = [0xFFFFFFFFFFFFFFFF] * self.n self.pv = [-1] * self.n self.pe = [-1] * self.n self.vis = [False] * self.n flow = 0 cost = 0 prev_cost = -1 result = [(flow, cost)] while flow < flow_limit: if not self._dual_ref(s, t): break c = flow_limit - flow v = t while v != s: c = min(c, self.g[self.pv[v]][self.pe[v]].cap) v = self.pv[v] v = t while v != s: e = self.g[self.pv[v]][self.pe[v]] e.cap -= c self.g[v][e.rev].cap += c v = self.pv[v] d = -self.dual[s] flow += c cost += c * d if prev_cost == d: result.pop() result.append((flow, cost)) prev_cost = cost return result def flow(self, s, t, flow_limit=0xFFFFFFFFFFFFFFFF): return self.slope(s, t, flow_limit)[-1] class _edge: def __init__(self, to, rev, cap, cost): self.to = to self.rev = rev self.cap = cap self.cost = cost N, M = map(int, input().split()) g = mcf_graph_int_cost(N + 2 * M) for i in range(M): u, v, c, d = map(int, input().split()) u -= 1 v -= 1 u2 = N + i v2 = N + M + i g.add_edge(u, u2, 2, 0) g.add_edge(v, u2, 2, 0) g.add_edge(u2, v2, 1, c) g.add_edge(u2, v2, 1, d) g.add_edge(v2, u, 2, 0) g.add_edge(v2, v, 2, 0) print(g.flow(0, N - 1, 2)[1])