結果
問題 | No.1301 Strange Graph Shortest Path |
ユーザー | zkou |
提出日時 | 2020-11-10 21:35:45 |
言語 | PyPy3 (7.3.15) |
結果 |
AC
|
実行時間 | 1,053 ms / 3,000 ms |
コード長 | 4,085 bytes |
コンパイル時間 | 415 ms |
コンパイル使用メモリ | 82,248 KB |
実行使用メモリ | 215,596 KB |
最終ジャッジ日時 | 2024-09-13 00:46:21 |
合計ジャッジ時間 | 30,021 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 38 ms
53,344 KB |
testcase_01 | AC | 38 ms
54,072 KB |
testcase_02 | AC | 910 ms
207,564 KB |
testcase_03 | AC | 837 ms
193,944 KB |
testcase_04 | AC | 1,016 ms
214,124 KB |
testcase_05 | AC | 873 ms
210,708 KB |
testcase_06 | AC | 953 ms
204,792 KB |
testcase_07 | AC | 928 ms
204,552 KB |
testcase_08 | AC | 885 ms
194,624 KB |
testcase_09 | AC | 725 ms
197,972 KB |
testcase_10 | AC | 788 ms
194,644 KB |
testcase_11 | AC | 921 ms
208,336 KB |
testcase_12 | AC | 837 ms
208,208 KB |
testcase_13 | AC | 771 ms
207,652 KB |
testcase_14 | AC | 1,000 ms
197,956 KB |
testcase_15 | AC | 773 ms
197,220 KB |
testcase_16 | AC | 927 ms
214,120 KB |
testcase_17 | AC | 884 ms
211,900 KB |
testcase_18 | AC | 948 ms
201,060 KB |
testcase_19 | AC | 752 ms
204,104 KB |
testcase_20 | AC | 873 ms
204,128 KB |
testcase_21 | AC | 883 ms
209,444 KB |
testcase_22 | AC | 980 ms
208,468 KB |
testcase_23 | AC | 778 ms
209,196 KB |
testcase_24 | AC | 946 ms
205,792 KB |
testcase_25 | AC | 929 ms
214,796 KB |
testcase_26 | AC | 892 ms
205,676 KB |
testcase_27 | AC | 758 ms
207,732 KB |
testcase_28 | AC | 758 ms
201,956 KB |
testcase_29 | AC | 1,053 ms
215,528 KB |
testcase_30 | AC | 847 ms
212,096 KB |
testcase_31 | AC | 891 ms
215,596 KB |
testcase_32 | AC | 38 ms
53,772 KB |
testcase_33 | AC | 499 ms
203,940 KB |
testcase_34 | AC | 766 ms
213,204 KB |
ソースコード
import sys import heapq input = sys.stdin.readline class mcf_graph: def __init__(self, n): self.n = n self.pos = [] self.g = [[] for _ in range(n)] def add_edge(self, from_, to, cap, cost): # assert 0 <= from_ < self.n # assert 0 <= to < self.n m = len(self.pos) self.pos.append((from_, len(self.g[from_]))) self.g[from_].append(self.__class__._edge(to, len(self.g[to]), cap, cost)) self.g[to].append(self.__class__._edge(from_, len(self.g[from_]) - 1, 0, -cost)) return m class edge: def __init__(self, from_, to, cap, flow, cost): self.from_ = from_ self.to = to self.cap = cap self.flow = flow self.cost = cost def get_edge(self, i): _e = self.g[self.pos[i][0]][self.pos[i][1]] _re = self.g[_e.to][_e.rev] return self.__class__.edge(self.pos[i][0], _e.to, _e.cap + _re.cap, _re.cap, _e.cost) def edges(self): ret = [] for i in range(len(self.pos)): _e = self.g[self.pos[i][0]][self.pos[i][1]] _re = self.g[_e.to][_e.rev] ret.append(self.__class__.edge(self.pos[i][0], _e.to, _e.cap + _re.cap, _re.cap, _e.cost)) return ret def _dual_ref(self, s, t): self.dist = [float('inf')] * self.n self.pv = [-1] * self.n self.pe = [-1] * self.n self.vis = [False] * self.n que = [(0, s)] self.dist[s] = 0 while que: _, v = heapq.heappop(que) if self.vis[v]: continue self.vis[v] = True if v == t: break for i in range(len(self.g[v])): e = self.g[v][i] if self.vis[e.to] or e.cap == 0: continue cost = e.cost - self.dual[e.to] + self.dual[v] if self.dist[e.to] > self.dist[v] + cost: self.dist[e.to] = self.dist[v] + cost self.pv[e.to] = v self.pe[e.to] = i heapq.heappush(que, (self.dist[e.to], e.to)) if not self.vis[t]: return False for v in range(self.n): if not self.vis[v]: continue self.dual[v] -= self.dist[t] - self.dist[v] return True def slope(self, s, t, flow_limit=float('inf')): # assert 0 <= s < self.n # assert 0 <= t < self.n # assert s != t self.dual = [0] * self.n self.dist = [float('inf')] * self.n self.pv = [-1] * self.n self.pe = [-1] * self.n self.vis = [False] * self.n flow = 0 cost = 0 prev_cost = -1 result = [(flow, cost)] while flow < flow_limit: if not self._dual_ref(s, t): break c = flow_limit - flow v = t while v != s: c = min(c, self.g[self.pv[v]][self.pe[v]].cap) v = self.pv[v] v = t while v != s: e = self.g[self.pv[v]][self.pe[v]] e.cap -= c self.g[v][e.rev].cap += c v = self.pv[v] d = -self.dual[s] flow += c cost += c * d if prev_cost == d: result.pop() result.append((flow, cost)) prev_cost = cost return result def flow(self, s, t, flow_limit=float('inf')): return self.slope(s, t, flow_limit)[-1] class _edge: def __init__(self, to, rev, cap, cost): self.to = to self.rev = rev self.cap = cap self.cost = cost N, M = map(int, input().split()) g = mcf_graph(N) for i in range(M): u, v, c, d = map(int, input().split()) u -= 1 v -= 1 g.add_edge(u, v, 1, c) g.add_edge(v, u, 1, c) g.add_edge(u, v, 1, d) g.add_edge(v, u, 1, d) print(g.flow(0, N - 1, 2)[1])