結果
| 問題 |
No.924 紲星
|
| コンテスト | |
| ユーザー |
iiljj
|
| 提出日時 | 2020-11-12 20:56:16 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 1,475 ms / 4,000 ms |
| コード長 | 18,559 bytes |
| コンパイル時間 | 4,496 ms |
| コンパイル使用メモリ | 221,160 KB |
| 最終ジャッジ日時 | 2025-01-15 22:16:58 |
|
ジャッジサーバーID (参考情報) |
judge2 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 16 |
ソースコード
/* #region Head */
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
using ull = unsigned long long;
using ld = long double;
using pll = pair<ll, ll>;
template <class T> using vc = vector<T>;
template <class T> using vvc = vc<vc<T>>;
using vll = vc<ll>;
using vvll = vvc<ll>;
using vld = vc<ld>;
using vvld = vvc<ld>;
using vs = vc<string>;
using vvs = vvc<string>;
template <class T, class U> using um = unordered_map<T, U>;
template <class T> using pq = priority_queue<T>;
template <class T> using pqa = priority_queue<T, vc<T>, greater<T>>;
template <class T> using us = unordered_set<T>;
#define REP(i, m, n) for (ll i = (m), i##_len = (ll)(n); i < i##_len; ++(i))
#define REPM(i, m, n) for (ll i = (m), i##_max = (ll)(n); i <= i##_max; ++(i))
#define REPR(i, m, n) for (ll i = (m), i##_min = (ll)(n); i >= i##_min; --(i))
#define REPD(i, m, n, d) for (ll i = (m), i##_len = (ll)(n); i < i##_len; i += (d))
#define REPMD(i, m, n, d) for (ll i = (m), i##_max = (ll)(n); i <= i##_max; i += (d))
#define REPI(itr, ds) for (auto itr = ds.begin(); itr != ds.end(); itr++)
#define ALL(x) begin(x), end(x)
#define SIZE(x) ((ll)(x).size())
#define PERM(c) \
sort(ALL(c)); \
for (bool c##p = 1; c##p; c##p = next_permutation(ALL(c)))
#define UNIQ(v) v.erase(unique(ALL(v)), v.end());
#define CEIL(a, b) (((a) + (b)-1) / (b))
#define endl '\n'
#define sqrt sqrtl
#define floor floorl
#define log2 log2l
constexpr ll INF = 1'010'000'000'000'000'017LL;
constexpr int IINF = 1'000'000'007LL;
constexpr ll MOD = 1'000'000'007LL; // 1e9 + 7
// constexpr ll MOD = 998244353;
constexpr ld EPS = 1e-12;
constexpr ld PI = 3.14159265358979323846;
template <typename T> istream &operator>>(istream &is, vc<T> &vec) { // vector 入力
for (T &x : vec) is >> x;
return is;
}
template <typename T> ostream &operator<<(ostream &os, vc<T> &vec) { // vector 出力 (for dump)
os << "{";
REP(i, 0, SIZE(vec)) os << vec[i] << (i == i_len - 1 ? "" : ", ");
os << "}";
return os;
}
template <typename T> ostream &operator>>(ostream &os, vc<T> &vec) { // vector 出力 (inline)
REP(i, 0, SIZE(vec)) os << vec[i] << (i == i_len - 1 ? "\n" : " ");
return os;
}
template <typename T, typename U> istream &operator>>(istream &is, pair<T, U> &pair_var) { // pair 入力
is >> pair_var.first >> pair_var.second;
return is;
}
template <typename T, typename U> ostream &operator<<(ostream &os, pair<T, U> &pair_var) { // pair 出力
os << "(" << pair_var.first << ", " << pair_var.second << ")";
return os;
}
// map, um, set, us 出力
template <class T> ostream &out_iter(ostream &os, T &map_var) {
os << "{";
REPI(itr, map_var) {
os << *itr;
auto itrcp = itr;
if (++itrcp != map_var.end()) os << ", ";
}
return os << "}";
}
template <typename T, typename U> ostream &operator<<(ostream &os, map<T, U> &map_var) { return out_iter(os, map_var); }
template <typename T, typename U> ostream &operator<<(ostream &os, um<T, U> &map_var) {
os << "{";
REPI(itr, map_var) {
auto [key, value] = *itr;
os << "(" << key << ", " << value << ")";
auto itrcp = itr;
if (++itrcp != map_var.end()) os << ", ";
}
os << "}";
return os;
}
template <typename T> ostream &operator<<(ostream &os, set<T> &set_var) { return out_iter(os, set_var); }
template <typename T> ostream &operator<<(ostream &os, us<T> &set_var) { return out_iter(os, set_var); }
template <typename T> ostream &operator<<(ostream &os, pq<T> &pq_var) {
pq<T> pq_cp(pq_var);
os << "{";
if (!pq_cp.empty()) {
os << pq_cp.top(), pq_cp.pop();
while (!pq_cp.empty()) os << ", " << pq_cp.top(), pq_cp.pop();
}
return os << "}";
}
void pprint() { cout << endl; }
template <class Head, class... Tail> void pprint(Head &&head, Tail &&... tail) {
cout << head;
if (sizeof...(Tail) > 0) cout << ' ';
pprint(move(tail)...);
}
// dump
#define DUMPOUT cerr
void dump_func() { DUMPOUT << endl; }
template <class Head, class... Tail> void dump_func(Head &&head, Tail &&... tail) {
DUMPOUT << head;
if (sizeof...(Tail) > 0) DUMPOUT << ", ";
dump_func(move(tail)...);
}
// chmax (更新「される」かもしれない値が前)
template <typename T, typename U, typename Comp = less<>> bool chmax(T &xmax, const U &x, Comp comp = {}) {
if (comp(xmax, x)) {
xmax = x;
return true;
}
return false;
}
// chmin (更新「される」かもしれない値が前)
template <typename T, typename U, typename Comp = less<>> bool chmin(T &xmin, const U &x, Comp comp = {}) {
if (comp(x, xmin)) {
xmin = x;
return true;
}
return false;
}
// ローカル用
#ifndef ONLINE_JUDGE
#define DEBUG_
#endif
#ifdef DEBUG_
#define DEB
#define dump(...) \
DUMPOUT << " " << string(#__VA_ARGS__) << ": " \
<< "[" << to_string(__LINE__) << ":" << __FUNCTION__ << "]" << endl \
<< " ", \
dump_func(__VA_ARGS__)
#else
#define DEB if (false)
#define dump(...)
#endif
#define VAR(type, ...) \
type __VA_ARGS__; \
cin >> __VA_ARGS__;
template <typename T> istream &operator,(istream &is, T &rhs) { return is >> rhs; }
template <typename T> ostream &operator,(ostream &os, const T &rhs) { return os << ' ' << rhs; }
struct AtCoderInitialize {
static constexpr int IOS_PREC = 15;
static constexpr bool AUTOFLUSH = false;
AtCoderInitialize() {
ios_base::sync_with_stdio(false), cin.tie(nullptr), cout.tie(nullptr);
cout << fixed << setprecision(IOS_PREC);
if (AUTOFLUSH) cout << unitbuf;
}
} ATCODER_INITIALIZE;
void Yn(bool p) { cout << (p ? "Yes" : "No") << endl; }
void YN(bool p) { cout << (p ? "YES" : "NO") << endl; }
/* #endregion */
// #include <atcoder/all>
// using namespace atcoder;
struct FullyIndexableDictionary {
int len, blk;
vector<unsigned> bit;
vector<int> sum;
FullyIndexableDictionary() {}
FullyIndexableDictionary(int len) : len(len), blk((len + 31) >> 5), bit(blk, 0), sum(blk, 0) {}
void set(int k) { bit[k >> 5] |= 1u << (k & 31); }
void build() {
sum[0] = 0;
for (int i = 1; i < blk; i++) sum[i] = sum[i - 1] + __builtin_popcount(bit[i - 1]);
}
bool operator[](int k) const { return bool((bit[k >> 5] >> (k & 31)) & 1); }
int rank(int k) { return sum[k >> 5] + __builtin_popcount(bit[k >> 5] & ((1u << (k & 31)) - 1)); }
int rank(bool v, int k) { return (v ? rank(k) : k - rank(k)); }
int select(bool v, int k) {
if (k < 0 or rank(v, len) <= k) return -1;
int l = 0, r = len;
while (l + 1 < r) {
int m = (l + r) >> 1;
if (rank(v, m) >= k + 1)
r = m;
else
l = m;
}
return r - 1;
}
int select(bool v, int i, int l) { return select(v, i + rank(v, l)); }
};
template <class T, int MAXLOG> struct WaveletMatrix {
int len;
FullyIndexableDictionary mat[MAXLOG];
int zs[MAXLOG], buff1[MAXLOG], buff2[MAXLOG];
static const T npos = -1;
WaveletMatrix(vector<T> data) {
len = data.size();
vector<T> ls(len), rs(len);
for (int dep = 0; dep < MAXLOG; dep++) {
mat[dep] = FullyIndexableDictionary(len + 1);
int p = 0, q = 0;
for (int i = 0; i < len; i++) {
bool k = (data[i] >> (MAXLOG - (dep + 1))) & 1;
if (k)
rs[q++] = data[i], mat[dep].set(i);
else
ls[p++] = data[i];
}
zs[dep] = p;
mat[dep].build();
swap(ls, data);
for (int i = 0; i < q; i++) data[p + i] = rs[i];
}
}
T access(int k) {
T res = 0;
for (int dep = 0; dep < MAXLOG; dep++) {
bool bit = mat[dep][k];
res = (res << 1) | bit;
k = mat[dep].rank(bit, k) + zs[dep] * dep;
}
return res;
}
// return the number of v in [0,k)
int rank(T v, int k) {
int l = 0, r = k;
for (int dep = 0; dep < MAXLOG; dep++) {
buff1[dep] = l;
buff2[dep] = r;
bool bit = (v >> (MAXLOG - (dep + 1))) & 1;
l = mat[dep].rank(bit, l) + zs[dep] * bit;
r = mat[dep].rank(bit, r) + zs[dep] * bit;
}
return r - l;
}
// return the position of k-th v
int select(T v, int k) {
rank(v, len);
for (int dep = MAXLOG - 1; dep >= 0; dep--) {
bool bit = (v >> (MAXLOG - (dep + 1))) & 1;
k = mat[dep].select(bit, k, buff1[dep]);
if (k >= buff2[dep] or k < 0) return -1;
k -= buff1[dep];
}
return k;
}
int select(T v, int k, int l) { return select(v, k + rank(v, l)); }
// return k-th largest value in [l,r)
T quantile(int l, int r, int k) {
if (r - l <= k or k < 0) return -1;
T res = 0;
for (int dep = 0; dep < MAXLOG; dep++) {
int p = mat[dep].rank(1, l);
int q = mat[dep].rank(1, r);
if (q - p > k) {
l = p + zs[dep];
r = q + zs[dep];
res |= T(1) << (MAXLOG - (dep + 1));
} else {
k -= (q - p);
l -= p;
r -= q;
}
}
return res;
}
T rquantile(int l, int r, int k) { return quantile(l, r, r - l - k - 1); }
int freq_dfs(int d, int l, int r, T val, T a, T b) {
if (l == r) return 0;
if (d == MAXLOG) return (a <= val and val < b) ? r - l : 0;
T nv = T(1) << (MAXLOG - d - 1) | val;
T nnv = ((T(1) << (MAXLOG - d - 1)) - 1) | nv;
if (nnv < a or b <= val) return 0;
if (a <= val and nnv < b) return r - l;
int lc = mat[d].rank(1, l), rc = mat[d].rank(1, r);
return freq_dfs(d + 1, l - lc, r - rc, val, a, b) + freq_dfs(d + 1, lc + zs[d], rc + zs[d], nv, a, b);
}
// return number of points in [left, right) * [lower, upper)
int rangefreq(int left, int right, T lower, T upper) { return freq_dfs(0, left, right, 0, lower, upper); }
pair<int, int> ll(int l, int r, T v) {
int res = 0;
for (int dep = 0; dep < MAXLOG; dep++) {
buff1[dep] = l;
buff2[dep] = r;
bool bit = (v >> (MAXLOG - (dep + 1))) & 1;
if (bit) res += r - l + mat[dep].rank(bit, l) - mat[dep].rank(bit, r);
l = mat[dep].rank(bit, l) + zs[dep] * bit;
r = mat[dep].rank(bit, r) + zs[dep] * bit;
}
return make_pair(res, r - l);
}
int lt(int l, int r, T v) {
auto p = ll(l, r, v);
return p.first;
}
int le(int l, int r, T v) {
auto p = ll(l, r, v);
return p.first + p.second;
}
T succ(int l, int r, T v) {
int k = le(l, r, v);
return k == r - l ? npos : rquantile(l, r, k);
}
T pred(int l, int r, T v) {
int k = lt(l, r, v);
return k ? rquantile(l, r, k - 1) : npos;
}
};
/* #region SegTree */
template <typename T> // T: 要素
struct SegmentTree {
using F = function<T(T, T)>; // 要素と要素をマージする関数.max とか.
ll n; // 木のノード数
ll nn; // 外から見た要素数
F f; // 区間クエリで使う演算,結合法則を満たす演算.区間最大値のクエリを投げたいなら max 演算.
T ti; // 値配列の初期値.演算 f に関する単位元.区間最大値なら単位元は 0. (a>0 なら max(a,0)=max(0,a)=a)
vc<T> dat; // 1-indexed 値配列 (index は木の根から順に 1 | 2 3 | 4 5 6 7 | 8 9 10 11 12 13 14 15 | ...)
// コンストラクタ.
SegmentTree() {}
// コンストラクタ.
SegmentTree(F f, T ti) : f(f), ti(ti) {}
// 指定要素数のセグメント木を初期化する
void init(ll n_) {
nn = n_;
n = 1;
while (n < n_) n <<= 1;
dat.assign(n << 1, ti);
}
// ベクトルからセグメント木を構築する
void build(const vc<T> &v) {
ll n_ = v.size();
init(n_);
REP(i, 0, n_) dat[n + i] = v[i];
REPR(i, n - 1, 1) dat[i] = f(dat[(i << 1) | 0], dat[(i << 1) | 1]);
}
// インデックス k の要素の値を x にする.
void set_val(ll k, T x) {
dat[k += n] = x;
while (k >>= 1) dat[k] = f(dat[(k << 1) | 0], dat[(k << 1) | 1]); // 上へ登って更新していく
}
// インデックス k の要素の値を取得する.
T get_val(ll k) { return dat[k + n]; }
// 半開区間 [a, b) に対するクエリを実行する
T query(ll a, ll b) {
if (a >= b) return ti;
// assert(a<b)
T vl = ti, vr = ti;
for (ll l = a + n, r = b + n; l < r; l >>= 1, r >>= 1) {
if (l & 1) vl = f(vl, dat[l++]);
if (r & 1) vr = f(dat[--r], vr);
}
return f(vl, vr);
}
// セグメント木上の二分探索
template <typename C> int find(ll st, C &check, T &acc, ll k, ll l, ll r) {
if (l + 1 == r) {
acc = f(acc, dat[k]);
return check(acc) ? k - n : -1;
}
ll m = (l + r) >> 1;
if (m <= st) return find(st, check, acc, (k << 1) | 1, m, r);
if (st <= l && !check(f(acc, dat[k]))) {
acc = f(acc, dat[k]);
return -1;
}
ll vl = find(st, check, acc, (k << 1) | 0, l, m);
if (~vl) return vl;
return find(st, check, acc, (k << 1) | 1, m, r);
}
// セグメント木上の二分探索.check(query(st, idx)) が真となる idx を返す.
template <typename C> int find(ll st, C &check) {
T acc = ti;
return find(st, check, acc, 1, 0, n);
}
// セグメント木上の二分探索.
// @param l 区間左端
// @param check 条件
// @return check(query(l,r)) が真となる最大の r(半開区間であることに注意).
int max_right(int l, const function<bool(T)> &check) {
assert(0 <= l && l <= nn);
assert(check(ti));
if (l == nn) return nn;
l += n;
T sm = ti;
do {
while (l % 2 == 0) l >>= 1;
if (!check(f(sm, dat[l]))) {
while (l < n) {
l = (2 * l);
if (check(f(sm, dat[l]))) {
sm = f(sm, dat[l]);
l++;
}
}
return l - n;
}
sm = f(sm, dat[l]);
l++;
} while ((l & -l) != l);
return nn;
}
// セグメント木上の二分探索.
// @param r 区間右端(半開区間であることに注意)
// @param check 条件
// @return check(query(l,r)) が真となる最小の l(半開区間であることに注意).
int min_left(int r, const function<bool(T)> &check) {
assert(0 <= r && r <= nn);
assert(check(ti));
if (r == 0) return 0;
r += n;
T sm = ti;
do {
r--;
while (r > 1 && (r % 2)) r >>= 1;
if (!check(f(dat[r], sm))) {
while (r < n) {
r = (2 * r + 1);
if (check(f(dat[r], sm))) {
sm = f(dat[r], sm);
r--;
}
}
return r + 1 - n;
}
sm = f(dat[r], sm);
} while ((r & -r) != r);
return 0;
}
// セグ木の中身を標準出力する.
void _dump() {
REP(k, 0, nn) {
T val = dat[k + n];
cout << val << (k == nn - 1 ? '\n' : ' ');
}
}
};
/* #endregion */
// Problem
void solve() {
VAR(ll, n, q);
vll a(n);
cin >> a;
vll l(q), r(q);
REP(i, 0, q) {
cin >> l[i] >> r[i];
--l[i]; //, --r[i];
}
ll mi = *min_element(ALL(a));
REP(i, 0, n) a[i] -= mi;
WaveletMatrix<ll, 60> wm(a);
vll medians(q);
REP(i, 0, q) {
medians[i] = wm.rquantile(l[i], r[i], (r[i] - l[i] - 1) / 2);
// dump(l[i], r[i], (r[i] - l[i] - 1) / 2, medians[i]);
}
// dump(medians);
// exit(0);
using pli = pair<ll, int>;
vc<pli> values(n);
REP(i, 0, n) values[i] = {a[i], i};
sort(ALL(values));
pqa<pair<int, int>> query;
REP(i, 0, q) query.emplace(medians[i], i);
vll small_sums(q);
vll small_nums(q);
auto f = [](int a, int b) { return a + b; };
SegmentTree<int> seg(f, 0);
seg.init(n);
auto f2 = [](ll a, ll b) { return a + b; };
SegmentTree<ll> seg2(f2, 0LL);
seg2.init(n);
REP(oi, 0, n) {
int idx = values[oi].second; // 数列の idx 番目が使用される
seg.set_val(idx, 1);
seg2.set_val(idx, values[oi].first);
// seg2._dump();
while (!query.empty() && query.top().first == values[oi].first) {
int qi = query.top().second;
query.pop();
small_nums[qi] = seg.query(l[qi], r[qi]);
small_sums[qi] = seg2.query(l[qi], r[qi]);
// dump(l[qi], r[qi], small_sums[qi]);
}
}
// dump(small_sums, small_nums);
REP(qi, 0, q) {
ll num = r[qi] - l[qi];
ll big_num = num - small_nums[qi];
ll big_sum = seg2.query(l[qi], r[qi]) - small_sums[qi];
ll median = medians[qi];
// dump(num, big_num, small_nums[qi], big_sum, small_sums[qi], medians[qi]);
ll sum = (big_sum - big_num * median) + (small_nums[qi] * median - small_sums[qi]);
pprint(sum);
}
}
// entry point
int main() {
solve();
return 0;
}
iiljj