結果
問題 | No.924 紲星 |
ユーザー | iiljj |
提出日時 | 2020-11-12 20:56:16 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 1,475 ms / 4,000 ms |
コード長 | 18,559 bytes |
コンパイル時間 | 4,496 ms |
コンパイル使用メモリ | 221,160 KB |
最終ジャッジ日時 | 2025-01-15 22:16:58 |
ジャッジサーバーID (参考情報) |
judge2 / judge4 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 5 ms
6,820 KB |
testcase_01 | AC | 6 ms
6,820 KB |
testcase_02 | AC | 4 ms
6,824 KB |
testcase_03 | AC | 41 ms
6,820 KB |
testcase_04 | AC | 6 ms
6,820 KB |
testcase_05 | AC | 6 ms
6,820 KB |
testcase_06 | AC | 7 ms
6,816 KB |
testcase_07 | AC | 5 ms
6,820 KB |
testcase_08 | AC | 1,195 ms
26,392 KB |
testcase_09 | AC | 1,384 ms
26,368 KB |
testcase_10 | AC | 1,475 ms
26,380 KB |
testcase_11 | AC | 1,475 ms
26,228 KB |
testcase_12 | AC | 1,297 ms
26,456 KB |
testcase_13 | AC | 450 ms
15,036 KB |
testcase_14 | AC | 455 ms
12,992 KB |
testcase_15 | AC | 431 ms
12,456 KB |
testcase_16 | AC | 345 ms
18,400 KB |
testcase_17 | AC | 688 ms
18,340 KB |
testcase_18 | AC | 2 ms
6,820 KB |
ソースコード
/* #region Head */ #include <bits/stdc++.h> using namespace std; using ll = long long; using ull = unsigned long long; using ld = long double; using pll = pair<ll, ll>; template <class T> using vc = vector<T>; template <class T> using vvc = vc<vc<T>>; using vll = vc<ll>; using vvll = vvc<ll>; using vld = vc<ld>; using vvld = vvc<ld>; using vs = vc<string>; using vvs = vvc<string>; template <class T, class U> using um = unordered_map<T, U>; template <class T> using pq = priority_queue<T>; template <class T> using pqa = priority_queue<T, vc<T>, greater<T>>; template <class T> using us = unordered_set<T>; #define REP(i, m, n) for (ll i = (m), i##_len = (ll)(n); i < i##_len; ++(i)) #define REPM(i, m, n) for (ll i = (m), i##_max = (ll)(n); i <= i##_max; ++(i)) #define REPR(i, m, n) for (ll i = (m), i##_min = (ll)(n); i >= i##_min; --(i)) #define REPD(i, m, n, d) for (ll i = (m), i##_len = (ll)(n); i < i##_len; i += (d)) #define REPMD(i, m, n, d) for (ll i = (m), i##_max = (ll)(n); i <= i##_max; i += (d)) #define REPI(itr, ds) for (auto itr = ds.begin(); itr != ds.end(); itr++) #define ALL(x) begin(x), end(x) #define SIZE(x) ((ll)(x).size()) #define PERM(c) \ sort(ALL(c)); \ for (bool c##p = 1; c##p; c##p = next_permutation(ALL(c))) #define UNIQ(v) v.erase(unique(ALL(v)), v.end()); #define CEIL(a, b) (((a) + (b)-1) / (b)) #define endl '\n' #define sqrt sqrtl #define floor floorl #define log2 log2l constexpr ll INF = 1'010'000'000'000'000'017LL; constexpr int IINF = 1'000'000'007LL; constexpr ll MOD = 1'000'000'007LL; // 1e9 + 7 // constexpr ll MOD = 998244353; constexpr ld EPS = 1e-12; constexpr ld PI = 3.14159265358979323846; template <typename T> istream &operator>>(istream &is, vc<T> &vec) { // vector 入力 for (T &x : vec) is >> x; return is; } template <typename T> ostream &operator<<(ostream &os, vc<T> &vec) { // vector 出力 (for dump) os << "{"; REP(i, 0, SIZE(vec)) os << vec[i] << (i == i_len - 1 ? "" : ", "); os << "}"; return os; } template <typename T> ostream &operator>>(ostream &os, vc<T> &vec) { // vector 出力 (inline) REP(i, 0, SIZE(vec)) os << vec[i] << (i == i_len - 1 ? "\n" : " "); return os; } template <typename T, typename U> istream &operator>>(istream &is, pair<T, U> &pair_var) { // pair 入力 is >> pair_var.first >> pair_var.second; return is; } template <typename T, typename U> ostream &operator<<(ostream &os, pair<T, U> &pair_var) { // pair 出力 os << "(" << pair_var.first << ", " << pair_var.second << ")"; return os; } // map, um, set, us 出力 template <class T> ostream &out_iter(ostream &os, T &map_var) { os << "{"; REPI(itr, map_var) { os << *itr; auto itrcp = itr; if (++itrcp != map_var.end()) os << ", "; } return os << "}"; } template <typename T, typename U> ostream &operator<<(ostream &os, map<T, U> &map_var) { return out_iter(os, map_var); } template <typename T, typename U> ostream &operator<<(ostream &os, um<T, U> &map_var) { os << "{"; REPI(itr, map_var) { auto [key, value] = *itr; os << "(" << key << ", " << value << ")"; auto itrcp = itr; if (++itrcp != map_var.end()) os << ", "; } os << "}"; return os; } template <typename T> ostream &operator<<(ostream &os, set<T> &set_var) { return out_iter(os, set_var); } template <typename T> ostream &operator<<(ostream &os, us<T> &set_var) { return out_iter(os, set_var); } template <typename T> ostream &operator<<(ostream &os, pq<T> &pq_var) { pq<T> pq_cp(pq_var); os << "{"; if (!pq_cp.empty()) { os << pq_cp.top(), pq_cp.pop(); while (!pq_cp.empty()) os << ", " << pq_cp.top(), pq_cp.pop(); } return os << "}"; } void pprint() { cout << endl; } template <class Head, class... Tail> void pprint(Head &&head, Tail &&... tail) { cout << head; if (sizeof...(Tail) > 0) cout << ' '; pprint(move(tail)...); } // dump #define DUMPOUT cerr void dump_func() { DUMPOUT << endl; } template <class Head, class... Tail> void dump_func(Head &&head, Tail &&... tail) { DUMPOUT << head; if (sizeof...(Tail) > 0) DUMPOUT << ", "; dump_func(move(tail)...); } // chmax (更新「される」かもしれない値が前) template <typename T, typename U, typename Comp = less<>> bool chmax(T &xmax, const U &x, Comp comp = {}) { if (comp(xmax, x)) { xmax = x; return true; } return false; } // chmin (更新「される」かもしれない値が前) template <typename T, typename U, typename Comp = less<>> bool chmin(T &xmin, const U &x, Comp comp = {}) { if (comp(x, xmin)) { xmin = x; return true; } return false; } // ローカル用 #ifndef ONLINE_JUDGE #define DEBUG_ #endif #ifdef DEBUG_ #define DEB #define dump(...) \ DUMPOUT << " " << string(#__VA_ARGS__) << ": " \ << "[" << to_string(__LINE__) << ":" << __FUNCTION__ << "]" << endl \ << " ", \ dump_func(__VA_ARGS__) #else #define DEB if (false) #define dump(...) #endif #define VAR(type, ...) \ type __VA_ARGS__; \ cin >> __VA_ARGS__; template <typename T> istream &operator,(istream &is, T &rhs) { return is >> rhs; } template <typename T> ostream &operator,(ostream &os, const T &rhs) { return os << ' ' << rhs; } struct AtCoderInitialize { static constexpr int IOS_PREC = 15; static constexpr bool AUTOFLUSH = false; AtCoderInitialize() { ios_base::sync_with_stdio(false), cin.tie(nullptr), cout.tie(nullptr); cout << fixed << setprecision(IOS_PREC); if (AUTOFLUSH) cout << unitbuf; } } ATCODER_INITIALIZE; void Yn(bool p) { cout << (p ? "Yes" : "No") << endl; } void YN(bool p) { cout << (p ? "YES" : "NO") << endl; } /* #endregion */ // #include <atcoder/all> // using namespace atcoder; struct FullyIndexableDictionary { int len, blk; vector<unsigned> bit; vector<int> sum; FullyIndexableDictionary() {} FullyIndexableDictionary(int len) : len(len), blk((len + 31) >> 5), bit(blk, 0), sum(blk, 0) {} void set(int k) { bit[k >> 5] |= 1u << (k & 31); } void build() { sum[0] = 0; for (int i = 1; i < blk; i++) sum[i] = sum[i - 1] + __builtin_popcount(bit[i - 1]); } bool operator[](int k) const { return bool((bit[k >> 5] >> (k & 31)) & 1); } int rank(int k) { return sum[k >> 5] + __builtin_popcount(bit[k >> 5] & ((1u << (k & 31)) - 1)); } int rank(bool v, int k) { return (v ? rank(k) : k - rank(k)); } int select(bool v, int k) { if (k < 0 or rank(v, len) <= k) return -1; int l = 0, r = len; while (l + 1 < r) { int m = (l + r) >> 1; if (rank(v, m) >= k + 1) r = m; else l = m; } return r - 1; } int select(bool v, int i, int l) { return select(v, i + rank(v, l)); } }; template <class T, int MAXLOG> struct WaveletMatrix { int len; FullyIndexableDictionary mat[MAXLOG]; int zs[MAXLOG], buff1[MAXLOG], buff2[MAXLOG]; static const T npos = -1; WaveletMatrix(vector<T> data) { len = data.size(); vector<T> ls(len), rs(len); for (int dep = 0; dep < MAXLOG; dep++) { mat[dep] = FullyIndexableDictionary(len + 1); int p = 0, q = 0; for (int i = 0; i < len; i++) { bool k = (data[i] >> (MAXLOG - (dep + 1))) & 1; if (k) rs[q++] = data[i], mat[dep].set(i); else ls[p++] = data[i]; } zs[dep] = p; mat[dep].build(); swap(ls, data); for (int i = 0; i < q; i++) data[p + i] = rs[i]; } } T access(int k) { T res = 0; for (int dep = 0; dep < MAXLOG; dep++) { bool bit = mat[dep][k]; res = (res << 1) | bit; k = mat[dep].rank(bit, k) + zs[dep] * dep; } return res; } // return the number of v in [0,k) int rank(T v, int k) { int l = 0, r = k; for (int dep = 0; dep < MAXLOG; dep++) { buff1[dep] = l; buff2[dep] = r; bool bit = (v >> (MAXLOG - (dep + 1))) & 1; l = mat[dep].rank(bit, l) + zs[dep] * bit; r = mat[dep].rank(bit, r) + zs[dep] * bit; } return r - l; } // return the position of k-th v int select(T v, int k) { rank(v, len); for (int dep = MAXLOG - 1; dep >= 0; dep--) { bool bit = (v >> (MAXLOG - (dep + 1))) & 1; k = mat[dep].select(bit, k, buff1[dep]); if (k >= buff2[dep] or k < 0) return -1; k -= buff1[dep]; } return k; } int select(T v, int k, int l) { return select(v, k + rank(v, l)); } // return k-th largest value in [l,r) T quantile(int l, int r, int k) { if (r - l <= k or k < 0) return -1; T res = 0; for (int dep = 0; dep < MAXLOG; dep++) { int p = mat[dep].rank(1, l); int q = mat[dep].rank(1, r); if (q - p > k) { l = p + zs[dep]; r = q + zs[dep]; res |= T(1) << (MAXLOG - (dep + 1)); } else { k -= (q - p); l -= p; r -= q; } } return res; } T rquantile(int l, int r, int k) { return quantile(l, r, r - l - k - 1); } int freq_dfs(int d, int l, int r, T val, T a, T b) { if (l == r) return 0; if (d == MAXLOG) return (a <= val and val < b) ? r - l : 0; T nv = T(1) << (MAXLOG - d - 1) | val; T nnv = ((T(1) << (MAXLOG - d - 1)) - 1) | nv; if (nnv < a or b <= val) return 0; if (a <= val and nnv < b) return r - l; int lc = mat[d].rank(1, l), rc = mat[d].rank(1, r); return freq_dfs(d + 1, l - lc, r - rc, val, a, b) + freq_dfs(d + 1, lc + zs[d], rc + zs[d], nv, a, b); } // return number of points in [left, right) * [lower, upper) int rangefreq(int left, int right, T lower, T upper) { return freq_dfs(0, left, right, 0, lower, upper); } pair<int, int> ll(int l, int r, T v) { int res = 0; for (int dep = 0; dep < MAXLOG; dep++) { buff1[dep] = l; buff2[dep] = r; bool bit = (v >> (MAXLOG - (dep + 1))) & 1; if (bit) res += r - l + mat[dep].rank(bit, l) - mat[dep].rank(bit, r); l = mat[dep].rank(bit, l) + zs[dep] * bit; r = mat[dep].rank(bit, r) + zs[dep] * bit; } return make_pair(res, r - l); } int lt(int l, int r, T v) { auto p = ll(l, r, v); return p.first; } int le(int l, int r, T v) { auto p = ll(l, r, v); return p.first + p.second; } T succ(int l, int r, T v) { int k = le(l, r, v); return k == r - l ? npos : rquantile(l, r, k); } T pred(int l, int r, T v) { int k = lt(l, r, v); return k ? rquantile(l, r, k - 1) : npos; } }; /* #region SegTree */ template <typename T> // T: 要素 struct SegmentTree { using F = function<T(T, T)>; // 要素と要素をマージする関数.max とか. ll n; // 木のノード数 ll nn; // 外から見た要素数 F f; // 区間クエリで使う演算,結合法則を満たす演算.区間最大値のクエリを投げたいなら max 演算. T ti; // 値配列の初期値.演算 f に関する単位元.区間最大値なら単位元は 0. (a>0 なら max(a,0)=max(0,a)=a) vc<T> dat; // 1-indexed 値配列 (index は木の根から順に 1 | 2 3 | 4 5 6 7 | 8 9 10 11 12 13 14 15 | ...) // コンストラクタ. SegmentTree() {} // コンストラクタ. SegmentTree(F f, T ti) : f(f), ti(ti) {} // 指定要素数のセグメント木を初期化する void init(ll n_) { nn = n_; n = 1; while (n < n_) n <<= 1; dat.assign(n << 1, ti); } // ベクトルからセグメント木を構築する void build(const vc<T> &v) { ll n_ = v.size(); init(n_); REP(i, 0, n_) dat[n + i] = v[i]; REPR(i, n - 1, 1) dat[i] = f(dat[(i << 1) | 0], dat[(i << 1) | 1]); } // インデックス k の要素の値を x にする. void set_val(ll k, T x) { dat[k += n] = x; while (k >>= 1) dat[k] = f(dat[(k << 1) | 0], dat[(k << 1) | 1]); // 上へ登って更新していく } // インデックス k の要素の値を取得する. T get_val(ll k) { return dat[k + n]; } // 半開区間 [a, b) に対するクエリを実行する T query(ll a, ll b) { if (a >= b) return ti; // assert(a<b) T vl = ti, vr = ti; for (ll l = a + n, r = b + n; l < r; l >>= 1, r >>= 1) { if (l & 1) vl = f(vl, dat[l++]); if (r & 1) vr = f(dat[--r], vr); } return f(vl, vr); } // セグメント木上の二分探索 template <typename C> int find(ll st, C &check, T &acc, ll k, ll l, ll r) { if (l + 1 == r) { acc = f(acc, dat[k]); return check(acc) ? k - n : -1; } ll m = (l + r) >> 1; if (m <= st) return find(st, check, acc, (k << 1) | 1, m, r); if (st <= l && !check(f(acc, dat[k]))) { acc = f(acc, dat[k]); return -1; } ll vl = find(st, check, acc, (k << 1) | 0, l, m); if (~vl) return vl; return find(st, check, acc, (k << 1) | 1, m, r); } // セグメント木上の二分探索.check(query(st, idx)) が真となる idx を返す. template <typename C> int find(ll st, C &check) { T acc = ti; return find(st, check, acc, 1, 0, n); } // セグメント木上の二分探索. // @param l 区間左端 // @param check 条件 // @return check(query(l,r)) が真となる最大の r(半開区間であることに注意). int max_right(int l, const function<bool(T)> &check) { assert(0 <= l && l <= nn); assert(check(ti)); if (l == nn) return nn; l += n; T sm = ti; do { while (l % 2 == 0) l >>= 1; if (!check(f(sm, dat[l]))) { while (l < n) { l = (2 * l); if (check(f(sm, dat[l]))) { sm = f(sm, dat[l]); l++; } } return l - n; } sm = f(sm, dat[l]); l++; } while ((l & -l) != l); return nn; } // セグメント木上の二分探索. // @param r 区間右端(半開区間であることに注意) // @param check 条件 // @return check(query(l,r)) が真となる最小の l(半開区間であることに注意). int min_left(int r, const function<bool(T)> &check) { assert(0 <= r && r <= nn); assert(check(ti)); if (r == 0) return 0; r += n; T sm = ti; do { r--; while (r > 1 && (r % 2)) r >>= 1; if (!check(f(dat[r], sm))) { while (r < n) { r = (2 * r + 1); if (check(f(dat[r], sm))) { sm = f(dat[r], sm); r--; } } return r + 1 - n; } sm = f(dat[r], sm); } while ((r & -r) != r); return 0; } // セグ木の中身を標準出力する. void _dump() { REP(k, 0, nn) { T val = dat[k + n]; cout << val << (k == nn - 1 ? '\n' : ' '); } } }; /* #endregion */ // Problem void solve() { VAR(ll, n, q); vll a(n); cin >> a; vll l(q), r(q); REP(i, 0, q) { cin >> l[i] >> r[i]; --l[i]; //, --r[i]; } ll mi = *min_element(ALL(a)); REP(i, 0, n) a[i] -= mi; WaveletMatrix<ll, 60> wm(a); vll medians(q); REP(i, 0, q) { medians[i] = wm.rquantile(l[i], r[i], (r[i] - l[i] - 1) / 2); // dump(l[i], r[i], (r[i] - l[i] - 1) / 2, medians[i]); } // dump(medians); // exit(0); using pli = pair<ll, int>; vc<pli> values(n); REP(i, 0, n) values[i] = {a[i], i}; sort(ALL(values)); pqa<pair<int, int>> query; REP(i, 0, q) query.emplace(medians[i], i); vll small_sums(q); vll small_nums(q); auto f = [](int a, int b) { return a + b; }; SegmentTree<int> seg(f, 0); seg.init(n); auto f2 = [](ll a, ll b) { return a + b; }; SegmentTree<ll> seg2(f2, 0LL); seg2.init(n); REP(oi, 0, n) { int idx = values[oi].second; // 数列の idx 番目が使用される seg.set_val(idx, 1); seg2.set_val(idx, values[oi].first); // seg2._dump(); while (!query.empty() && query.top().first == values[oi].first) { int qi = query.top().second; query.pop(); small_nums[qi] = seg.query(l[qi], r[qi]); small_sums[qi] = seg2.query(l[qi], r[qi]); // dump(l[qi], r[qi], small_sums[qi]); } } // dump(small_sums, small_nums); REP(qi, 0, q) { ll num = r[qi] - l[qi]; ll big_num = num - small_nums[qi]; ll big_sum = seg2.query(l[qi], r[qi]) - small_sums[qi]; ll median = medians[qi]; // dump(num, big_num, small_nums[qi], big_sum, small_sums[qi], medians[qi]); ll sum = (big_sum - big_num * median) + (small_nums[qi] * median - small_sums[qi]); pprint(sum); } } // entry point int main() { solve(); return 0; }