結果
問題 | No.243 出席番号(2) |
ユーザー | tkmst201 |
提出日時 | 2020-11-13 10:39:02 |
言語 | C++17(gcc12) (gcc 12.3.0 + boost 1.87.0) |
結果 |
RE
|
実行時間 | - |
コード長 | 5,104 bytes |
コンパイル時間 | 2,457 ms |
コンパイル使用メモリ | 209,204 KB |
実行使用メモリ | 199,424 KB |
最終ジャッジ日時 | 2024-07-22 19:53:01 |
合計ジャッジ時間 | 6,283 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 2 ms
5,376 KB |
testcase_02 | AC | 2 ms
5,376 KB |
testcase_03 | AC | 11 ms
11,520 KB |
testcase_04 | AC | 12 ms
11,648 KB |
testcase_05 | AC | 12 ms
11,392 KB |
testcase_06 | AC | 12 ms
11,648 KB |
testcase_07 | AC | 12 ms
11,392 KB |
testcase_08 | AC | 40 ms
35,072 KB |
testcase_09 | AC | 41 ms
35,072 KB |
testcase_10 | AC | 40 ms
34,944 KB |
testcase_11 | AC | 40 ms
35,072 KB |
testcase_12 | RE | - |
testcase_13 | MLE | - |
testcase_14 | MLE | - |
testcase_15 | MLE | - |
testcase_16 | MLE | - |
testcase_17 | RE | - |
testcase_18 | MLE | - |
testcase_19 | MLE | - |
testcase_20 | MLE | - |
testcase_21 | MLE | - |
testcase_22 | RE | - |
testcase_23 | MLE | - |
testcase_24 | MLE | - |
testcase_25 | MLE | - |
testcase_26 | MLE | - |
testcase_27 | MLE | - |
testcase_28 | AC | 2 ms
5,376 KB |
testcase_29 | AC | 2 ms
5,376 KB |
testcase_30 | AC | 2 ms
5,376 KB |
testcase_31 | AC | 2 ms
5,376 KB |
testcase_32 | AC | 2 ms
5,376 KB |
ソースコード
#include <bits/stdc++.h> using namespace std; #define FOR(i,a,b) for(int i=(a);i<(b);++i) #define REP(i,n) FOR(i,0,n) #define ALL(v) begin(v),end(v) template<typename A, typename B> inline bool chmax(A &a, B b) { if (a<b) { a=b; return 1; } return 0; } template<typename A, typename B> inline bool chmin(A &a, B b) { if (a>b) { a=b; return 1; } return 0; } using ll = long long; using pii = pair<int, int>; constexpr ll INF = 1ll<<30; constexpr ll longINF = 1ll<<60; constexpr ll MOD = 1000000007; constexpr bool debug = 0; //---------------------------------// /* P_i := i 君に出席番号 A_i が割り振られる事象 (\bigcup_{i=0}^N P_i)^c が答え(^c は補集合) 包除原理で求める 同じ A_i を持つような i から(2 つ以上)適当に選び b_1, b_2 , .., b_m とすると、 \bigcap_{j=0}^m P_j = \emptyset なので、同じ A_i を持つ人をまとめる dp[i][j] := A_i <= i を持つ人までで次の条件を満たす k の個数が j であるような選び方 - 同じ A_k を持つような k は 1 つのみ */ template<int M> struct ModInt { public: using value_type = long long; ModInt(value_type val = 0) : val(val < 0 ? (M - (-val % M)) % M : val % M) {} explicit operator bool() const noexcept { return val; } bool operator ==(const ModInt & rhs) const noexcept { return val == rhs.val; } bool operator !=(const ModInt & rhs) const noexcept { return !(*this == rhs); } ModInt operator +() const noexcept { return ModInt(*this); } ModInt operator -() const noexcept { return ModInt(0) -= *this; } ModInt operator +(const ModInt & rhs) const noexcept { return ModInt(*this) += rhs; } ModInt operator -(const ModInt & rhs) const noexcept { return ModInt(*this) -= rhs; } ModInt operator *(const ModInt & rhs) const noexcept { return ModInt(*this) *= rhs; } ModInt operator /(const ModInt & rhs) const noexcept { return ModInt(*this) /= rhs; } ModInt & operator +=(const ModInt & rhs) noexcept { val += rhs.val; if (val >= M) val -= M; return *this; } ModInt & operator -=(const ModInt & rhs) noexcept { if (val < rhs.val) val += M; val -= rhs.val; return *this; } ModInt & operator *=(const ModInt & rhs) noexcept { val = val * rhs.val % M; return *this; } ModInt & operator /=(const ModInt & rhs) noexcept { *this *= rhs.inverse(); return *this; } ModInt pow(value_type n) const { ModInt res = 1, x = val; if (n < 0) { x = x.inverse(); n = -n; } while (n) { if (n & 1) res *= x; x *= x; n >>= 1; } return res; } ModInt inverse() const { long long a = val, a1 = 1, a2 = 0, b = M, b1 = 0, b2 = 1; while (b > 0) { value_type q = a / b, r = a % b; value_type nb1 = a1 - q * b1, nb2 = a2 - q * b2; a = b; b = r; a1 = b1; b1 = nb1; a2 = b2; b2 = nb2; } assert(a == 1); return a1; } const value_type & get() const noexcept { return val; } static decltype(M) get_mod() noexcept { return M; } friend std::ostream & operator <<(std::ostream & os, const ModInt & rhs) { return os << rhs.val; } friend std::istream & operator >>(std::istream & is, ModInt & rhs) { value_type x; is >> x; rhs = ModInt(x); return is; } private: value_type val; }; using mint = ModInt<MOD>; template<typename T> struct Combination { public: using size_type = std::size_t; Combination(size_type sz = 1) : _fact(1, 1), _finv(1, 1), _inv(1, 1) { build(sz); } T fact(size_type k) { if (k >= T::get_mod()) return 0; build(k); return _fact[k]; } T finv(size_type k) { assert(k < T::get_mod()); build(k); return _finv[k]; } T inv(size_type k) { assert(k > 0 && k < T::get_mod()); build(k); return _inv[k]; } T operator ()(int n, int r) { return c(n, r); } T c(int n, int r) { if (r < 0 || n < r) return 0; return fact(n) * finv(r) * finv(n - r); } private: std::vector<T> _fact, _finv, _inv; static constexpr size_type MAX_LIMIT = 50000000; void build(size_type k) { if (_fact.size() > k) return; assert(k < MAX_LIMIT); size_type sz = std::min({MAX_LIMIT, static_cast<size_type>(T::get_mod()), std::max(_fact.size() * 2, k + 1)}); size_type presz = _fact.size(); _fact.resize(sz); _finv.resize(sz); _inv.resize(sz); for (size_type i = presz; i < sz; ++i) _fact[i] = _fact[i - 1] * i; _finv[sz - 1] = T(_fact[sz - 1]).inverse(); for (size_type i = sz - 1; i > presz; --i) { _finv[i - 1] = _finv[i] * i; _inv[i] = _fact[i - 1] * _finv[i]; } _inv[presz] = _fact[presz - 1] * _finv[presz]; } }; using Comb = Combination<mint>; Comb comb; int main() { int N; cin >> N; vector<int> A(N), cnt(N); REP(i, N) scanf("%d", &A[i]), ++cnt[A[i]]; /* dp[i][j] := A_i <= i を持つ人までで次の条件を満たす k の個数が j であるような選び方 - 同じ A_k を持つような k は 1 つのみ */ vector<vector<mint>> dp(N + 1, vector<mint>(N + 1)); dp[0][0] = 1; REP(i, N) REP(j, N) { dp[i + 1][j] += dp[i][j]; dp[i + 1][j + 1] += dp[i][j] * cnt[i]; } mint ans = 0; REP(i, N + 1) { mint cur = dp[N][i] * comb.fact(N - i); ans += cur * ((i & 1) ? -1 : 1); } cout << ans << endl; return 0; }