結果
| 問題 | No.1240 Or Sum of Xor Pair |
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2020-11-13 14:27:02 |
| 言語 | Haskell (9.10.1) |
| 結果 |
CE
(最新)
AC
(最初)
|
| 実行時間 | - |
| コード長 | 5,675 bytes |
| 記録 | |
| コンパイル時間 | 565 ms |
| コンパイル使用メモリ | 202,880 KB |
| 最終ジャッジ日時 | 2024-11-14 23:54:19 |
| 合計ジャッジ時間 | 2,027 ms |
|
ジャッジサーバーID (参考情報) |
judge2 / judge4 |
(要ログイン)
コンパイルエラー時のメッセージ・ソースコードは、提出者また管理者しか表示できないようにしております。(リジャッジ後のコンパイルエラーは公開されます)
ただし、clay言語の場合は開発者のデバッグのため、公開されます。
ただし、clay言語の場合は開発者のデバッグのため、公開されます。
コンパイルメッセージ
Loaded package environment from /home/judge/.ghc/x86_64-linux-9.8.2/environments/default
[1 of 2] Compiling Main ( Main.hs, Main.o )
Main.hs:24:25: error: [GHC-87543]
Ambiguous occurrence ‘.<<.’.
It could refer to
either ‘Data.Bits..<<.’,
imported from ‘Data.Bits’ at Main.hs:9:1-26,
or ‘Main..<<.’, defined at Main.hs:154:1.
|
24 | f <- VUM.replicate (1 .<<. m) (0 :: Int)
| ^^^^
Main.hs:25:25: error: [GHC-87543]
Ambiguous occurrence ‘.<<.’.
It could refer to
either ‘Data.Bits..<<.’,
imported from ‘Data.Bits’ at Main.hs:9:1-26,
or ‘Main..<<.’, defined at Main.hs:154:1.
|
25 | g <- VUM.replicate (1 .<<. m) (0 :: Int)
| ^^^^
Main.hs:35:28: error: [GHC-87543]
Ambiguous occurrence ‘.<<.’.
It could refer to
either ‘Data.Bits..<<.’,
imported from ‘Data.Bits’ at Main.hs:9:1-26,
or ‘Main..<<.’, defined at Main.hs:154:1.
|
35 | ff <- VUM.replicate (1 .<<. m) (0 :: Int)
| ^^^^
Main.hs:36:50: error: [GHC-87543]
Ambiguous occurrence ‘.>>.’.
It could refer to
either ‘Data.Bits..>>.’,
imported from ‘Data.Bits’ at Main.hs:9:1-26,
or ‘Main..>>.’, defined at Main.hs:156:1.
|
36 | VU.forM_ an $ \a -> VUM.unsafeModify ff (+(a .>>. d .&. 1)) a
| ^^^^
Main.hs:40:40: error: [GHC-87543]
Ambiguous occurrence ‘.<<.’.
It could refer to
either ‘Data.Bits..<<.’,
imported from ‘Data.Bits’ at Main.hs:9:1-26,
or ‘Main..<<.’, defined at Main.hs:154:1.
|
40 | modifyIORef' ans (subtract (ff2Sum .<<. d))
| ^^^^
Main.hs:142:46: error: [GHC-87543]
Ambiguous occurrence ‘.<<.’.
It could refer to
ソースコード
{-# LANGUAGE BangPatterns #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE MagicHash #-}
{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE UndecidableInstances #-}
import Control.Monad
import Control.Monad.State
import Data.Bits
import Data.Char
import Data.IORef
import GHC.Exts
import qualified Data.ByteString.Char8 as BSC8
import qualified Data.Vector.Fusion.Stream.Monadic as VFSM
import qualified Data.Vector.Unboxed as VU
import qualified Data.Vector.Unboxed.Mutable as VUM
main :: IO ()
main = do
[n, x] <- map (read :: String -> Int) . words <$> getLine
an <- seqInput n
let
m = bitLength $ VU.maximum an
f <- VUM.replicate (1 .<<. m) (0 :: Int)
g <- VUM.replicate (1 .<<. m) (0 :: Int)
VU.forM_ an $ \a -> do
VUM.unsafeModify f (+a) a
VUM.unsafeModify g (+1) a
f' <- VU.unsafeFreeze f
g' <- VU.unsafeFreeze g
let fg = convolute f' g' XOR
let fgSum = (*2) . VU.sum . VU.take x $ fg
ans <- newIORef fgSum
rep m $ \d -> do
ff <- VUM.replicate (1 .<<. m) (0 :: Int)
VU.forM_ an $ \a -> VUM.unsafeModify ff (+(a .>>. d .&. 1)) a
ff' <- VU.unsafeFreeze ff
let ff2 = convolute ff' ff' XOR
let ff2Sum = VU.sum . VU.take x $ ff2
modifyIORef' ans (subtract (ff2Sum .<<. d))
modifyIORef' ans ((`div` 2) . subtract (VU.sum an))
print =<< readIORef ans
data Kinds = AND | OR | XOR
deriving Eq
walshSpectre :: VU.Vector Int -> VU.Vector Int
walshSpectre vec = fwt vec False False True
convolute :: VU.Vector Int -> VU.Vector Int -> Kinds -> VU.Vector Int
convolute xs ys k
| k == AND = convoluteAND xs ys
| k == OR = convoluteOR xs ys
| otherwise = convoluteXOR xs ys
convoluteAND :: VU.Vector Int -> VU.Vector Int -> VU.Vector Int
convoluteAND xs ys =
let
xs' = fwt xs False True False
ys' = fwt ys False True False
zs' = VU.zipWith (*) xs' ys'
in
VU.take m $ fwt zs' True True False
where
!m = min (VU.length xs) (VU.length ys)
convoluteOR :: VU.Vector Int -> VU.Vector Int -> VU.Vector Int
convoluteOR xs ys =
let
xs' = fwt xs False False False
ys' = fwt ys False False False
zs' = VU.zipWith (*) xs' ys'
in
fwt zs' True False False
convoluteXOR :: VU.Vector Int -> VU.Vector Int -> VU.Vector Int
convoluteXOR xs ys =
let
xs' = fwt xs False False True
ys' = fwt ys False False True
zs' = VU.zipWith (*) xs' ys'
in
fwt zs' True False True
fwt :: VU.Vector Int -> Bool -> Bool -> Bool -> VU.Vector Int
fwt f' inv isAND isXOR = VU.create $ do
g <- VU.unsafeThaw f
rep' n $ \i -> rep n $ \j -> when (j .&. i == 0) $ do
if isXOR
then do
itemX <- VUM.unsafeRead g j
itemY <- VUM.unsafeRead g (j .|. i)
if inv
then do
VUM.unsafeWrite g j ((itemX + itemY) `div` 2)
VUM.unsafeWrite g (j .|. i) ((itemX - itemY) `div` 2)
else do
VUM.unsafeWrite g j (itemX + itemY)
VUM.unsafeWrite g (j .|. i) (itemX - itemY)
else do
if isAND
then do
item <- VUM.unsafeRead g (j .|. i)
if inv
then VUM.unsafeModify g (subtract item) j
else VUM.unsafeModify g (+ item) j
else do
item <- VUM.unsafeRead g j
if inv
then VUM.unsafeModify g (subtract item) (j .|. i)
else VUM.unsafeModify g (+ item) (j .|. i)
return g
where
!f = growVU f'
!n = VU.length f
growVU :: VU.Vector Int -> VU.Vector Int
growVU v
| VU.null v = VU.singleton 0
| VU.length v == 1 = v
| otherwise = v VU.++ VU.replicate (ceilPow2 n - n) 0
where !n = VU.length v
stream :: Monad m => Int -> Int -> VFSM.Stream m Int
stream !l !r = VFSM.Stream step l
where
step x
| x < r = return $ VFSM.Yield x (x + 1)
| otherwise = return VFSM.Done
{-# INLINE [0] step #-}
{-# INLINE [1] stream #-}
rep :: Monad m => Int -> (Int -> m ()) -> m ()
rep n = flip VFSM.mapM_ (stream 0 n)
{-# INLINE rep #-}
stream' :: Monad m => Int -> Int -> VFSM.Stream m Int
stream' !l !r = VFSM.Stream step l
where
step x
| x < r = return $ VFSM.Yield x (x .<<. 1)
| otherwise = return VFSM.Done
{-# INLINE [0] step #-}
{-# INLINE [1] stream' #-}
rep' :: Monad m => Int -> (Int -> m ()) -> m ()
rep' n = flip VFSM.mapM_ (stream' 1 n)
{-# INLINE rep' #-}
infixl 8 .<<., .>>., .>>>.
infixl 6 .^.
(.<<.), (.>>.) :: Bits b => b -> Int -> b
(.<<.) = unsafeShiftL
{-# INLINE (.<<.) #-}
(.>>.) = unsafeShiftR
{-# INLINE (.>>.) #-}
(.>>>.) :: Int -> Int -> Int
(.>>>.) (I# x#) (I# i#) = I# (uncheckedIShiftRL# x# i#)
{-# INLINE (.>>>.) #-}
(.^.) :: Bits b => b -> b -> b
(.^.) = xor
{-# INLINE (.^.) #-}
clz :: FiniteBits fb => fb -> Int
clz = countLeadingZeros
{-# INLINE clz #-}
ctz :: FiniteBits fb => fb -> Int
ctz = countTrailingZeros
{-# INLINE ctz #-}
ceilPow2 :: Int -> Int
ceilPow2 n
| n > 1 = (-1) .>>>. clz (n - 1) + 1
| otherwise = 1
{-# INLINE ceilPow2 #-}
floorPow2 :: Int -> Int
floorPow2 n
| n >= 1 = 1 .<<. (63 - clz n)
| otherwise = 0
{-# INLINE floorPow2 #-}
bitLength :: FiniteBits fb => fb -> Int
bitLength n = 64 - countLeadingZeros n
{-# INLINE bitLength #-}
type CParser a = StateT BSC8.ByteString Maybe a
runCParser :: CParser a -> BSC8.ByteString -> Maybe (a, BSC8.ByteString)
runCParser = runStateT
{-# INLINE runCParser #-}
int :: CParser Int
int = coerce $ BSC8.readInt . BSC8.dropWhile isSpace
{-# INLINE int #-}
seqInput :: Int -> IO (VU.Vector Int)
seqInput n = VU.unfoldrN n (runCParser int) <$> BSC8.getLine
{-# INLINE seqInput #-}