結果

問題 No.1288 yuki collection
ユーザー 沙耶花沙耶花
提出日時 2020-11-13 22:45:34
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 4,298 ms / 5,000 ms
コード長 6,069 bytes
コンパイル時間 2,636 ms
コンパイル使用メモリ 224,624 KB
実行使用メモリ 47,416 KB
最終ジャッジ日時 2024-07-22 21:46:36
合計ジャッジ時間 54,189 ms
ジャッジサーバーID
(参考情報)
judge1 / judge2
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
5,248 KB
testcase_01 AC 2 ms
5,376 KB
testcase_02 AC 2 ms
5,376 KB
testcase_03 AC 2 ms
5,376 KB
testcase_04 AC 2 ms
5,376 KB
testcase_05 AC 2 ms
5,376 KB
testcase_06 AC 2 ms
5,376 KB
testcase_07 AC 2 ms
5,376 KB
testcase_08 AC 3 ms
5,376 KB
testcase_09 AC 2 ms
5,376 KB
testcase_10 AC 3 ms
5,376 KB
testcase_11 AC 3 ms
5,376 KB
testcase_12 AC 3 ms
5,376 KB
testcase_13 AC 1,735 ms
30,288 KB
testcase_14 AC 1,882 ms
30,356 KB
testcase_15 AC 1,227 ms
25,740 KB
testcase_16 AC 1,302 ms
26,124 KB
testcase_17 AC 1,932 ms
29,956 KB
testcase_18 AC 1,906 ms
30,056 KB
testcase_19 AC 1,848 ms
29,956 KB
testcase_20 AC 2,137 ms
31,184 KB
testcase_21 AC 4,121 ms
42,364 KB
testcase_22 AC 4,103 ms
42,340 KB
testcase_23 AC 4,060 ms
42,460 KB
testcase_24 AC 1,935 ms
30,512 KB
testcase_25 AC 1,818 ms
30,864 KB
testcase_26 AC 1,986 ms
30,840 KB
testcase_27 AC 574 ms
17,888 KB
testcase_28 AC 922 ms
24,968 KB
testcase_29 AC 746 ms
27,040 KB
testcase_30 AC 100 ms
28,372 KB
testcase_31 AC 145 ms
29,236 KB
testcase_32 AC 149 ms
28,548 KB
testcase_33 AC 4,117 ms
46,264 KB
testcase_34 AC 2,409 ms
31,416 KB
testcase_35 AC 2,043 ms
30,200 KB
testcase_36 AC 900 ms
31,828 KB
testcase_37 AC 1,036 ms
31,856 KB
testcase_38 AC 4,298 ms
47,416 KB
testcase_39 AC 803 ms
45,708 KB
testcase_40 AC 44 ms
27,804 KB
testcase_41 AC 2 ms
5,376 KB
testcase_42 AC 2 ms
5,376 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <stdio.h>
#include <bits/stdc++.h>

#include <algorithm>
#include <cassert>
#include <limits>
#include <queue>
#include <vector>

namespace atcoder {

template <class Cap, class Cost> struct mcf_graph {
  public:
    mcf_graph() {}
    mcf_graph(int n) : _n(n), g(n) {}

    int add_edge(int from, int to, Cap cap, Cost cost) {
        assert(0 <= from && from < _n);
        assert(0 <= to && to < _n);
        int m = int(pos.size());
        pos.push_back({from, int(g[from].size())});
        g[from].push_back(_edge{to, int(g[to].size()), cap, cost});
        g[to].push_back(_edge{from, int(g[from].size()) - 1, 0, -cost});
        return m;
    }

    struct edge {
        int from, to;
        Cap cap, flow;
        Cost cost;
    };

    edge get_edge(int i) {
        int m = int(pos.size());
        assert(0 <= i && i < m);
        auto _e = g[pos[i].first][pos[i].second];
        auto _re = g[_e.to][_e.rev];
        return edge{
            pos[i].first, _e.to, _e.cap + _re.cap, _re.cap, _e.cost,
        };
    }
    std::vector<edge> edges() {
        int m = int(pos.size());
        std::vector<edge> result(m);
        for (int i = 0; i < m; i++) {
            result[i] = get_edge(i);
        }
        return result;
    }

    std::pair<Cap, Cost> flow(int s, int t) {
        return flow(s, t, std::numeric_limits<Cap>::max());
    }
    std::pair<Cap, Cost> flow(int s, int t, Cap flow_limit) {
        return slope(s, t, flow_limit).back();
    }
    std::vector<std::pair<Cap, Cost>> slope(int s, int t) {
        return slope(s, t, std::numeric_limits<Cap>::max());
    }
    std::vector<std::pair<Cap, Cost>> slope(int s, int t, Cap flow_limit) {
        assert(0 <= s && s < _n);
        assert(0 <= t && t < _n);
        assert(s != t);
        // variants (C = maxcost):
        // -(n-1)C <= dual[s] <= dual[i] <= dual[t] = 0
        // reduced cost (= e.cost + dual[e.from] - dual[e.to]) >= 0 for all edge
        std::vector<Cost> dual(_n, 0), dist(_n);
        std::vector<int> pv(_n), pe(_n);
        std::vector<bool> vis(_n);
        auto dual_ref = [&]() {
            std::fill(dist.begin(), dist.end(),
                      std::numeric_limits<Cost>::max());
            std::fill(pv.begin(), pv.end(), -1);
            std::fill(pe.begin(), pe.end(), -1);
            std::fill(vis.begin(), vis.end(), false);
            struct Q {
                Cost key;
                int to;
                bool operator<(Q r) const { return key > r.key; }
            };
            std::priority_queue<Q> que;
            dist[s] = 0;
            que.push(Q{0, s});
            while (!que.empty()) {
                int v = que.top().to;
                que.pop();
                if (vis[v]) continue;
                vis[v] = true;
                if (v == t) break;
                // dist[v] = shortest(s, v) + dual[s] - dual[v]
                // dist[v] >= 0 (all reduced cost are positive)
                // dist[v] <= (n-1)C
                for (int i = 0; i < int(g[v].size()); i++) {
                    auto e = g[v][i];
                    if (vis[e.to] || !e.cap) continue;
                    // |-dual[e.to] + dual[v]| <= (n-1)C
                    // cost <= C - -(n-1)C + 0 = nC
                    Cost cost = e.cost - dual[e.to] + dual[v];
                    if (dist[e.to] - dist[v] > cost) {
                        dist[e.to] = dist[v] + cost;
                        pv[e.to] = v;
                        pe[e.to] = i;
                        que.push(Q{dist[e.to], e.to});
                    }
                }
            }
            if (!vis[t]) {
                return false;
            }

            for (int v = 0; v < _n; v++) {
                if (!vis[v]) continue;
                // dual[v] = dual[v] - dist[t] + dist[v]
                //         = dual[v] - (shortest(s, t) + dual[s] - dual[t]) + (shortest(s, v) + dual[s] - dual[v])
                //         = - shortest(s, t) + dual[t] + shortest(s, v)
                //         = shortest(s, v) - shortest(s, t) >= 0 - (n-1)C
                dual[v] -= dist[t] - dist[v];
            }
            return true;
        };
        Cap flow = 0;
        Cost cost = 0, prev_cost = -1;
        std::vector<std::pair<Cap, Cost>> result;
        result.push_back({flow, cost});
        while (flow < flow_limit) {
            if (!dual_ref()) break;
            Cap c = flow_limit - flow;
            for (int v = t; v != s; v = pv[v]) {
                c = std::min(c, g[pv[v]][pe[v]].cap);
            }
            for (int v = t; v != s; v = pv[v]) {
                auto& e = g[pv[v]][pe[v]];
                e.cap -= c;
                g[v][e.rev].cap += c;
            }
            Cost d = -dual[s];
            flow += c;
            cost += c * d;
            if (prev_cost == d) {
                result.pop_back();
            }
            result.push_back({flow, cost});
            prev_cost = cost;
        }
        return result;
    }

  private:
    int _n;

    struct _edge {
        int to, rev;
        Cap cap;
        Cost cost;
    };

    std::vector<std::pair<int, int>> pos;
    std::vector<std::vector<_edge>> g;
};

}  // namespace atcoder

using namespace atcoder;
using namespace std;
#define rep(i,n) for (int i = 0; i < (n); ++i)
#define Inf 1000000005
#define modulo 1000000007



int main(){
	int N;
	cin>>N;
	string S;
	cin>>S;
	
	vector<int> V(S.size());
	rep(i,S.size())cin>>V[i];
	
	int s = 2*S.size(),t = 2*S.size()+1;
	long long T = 1e14;
	mcf_graph<int,long long> G(2*S.size()+2);
	
	G.add_edge(s,t,500,T*4);
	
	rep(i,S.size()){
		G.add_edge(i,i+N,1,0);
		if(S[i]=='i'){
			G.add_edge(i,t,1,0);
		}
		if(S[i]=='y'){
			G.add_edge(s,i,1,T-V[i]);
		}
		for(int j=i+1;j<S.size();j++){
			bool f = false;
			if(S[i]=='y'&&S[j]=='u')f=true;
			if(S[i]=='u'&&S[j]=='k')f=true;
			if(S[i]=='k'&&S[j]=='i')f=true;
			
			if(f){
				G.add_edge(i+N,j,1,T-V[j]);
			}
		}
	}
	
	long long ans = G.flow(s,t,500).second;

	ans -= T * 500*4;
	ans *= -1;
	
	
	cout<<ans<<endl;
	
	return 0;
}
0