結果

問題 No.1288 yuki collection
ユーザー kaikeykaikey
提出日時 2020-11-13 23:01:28
言語 C++14
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 4,875 ms / 5,000 ms
コード長 6,827 bytes
コンパイル時間 2,271 ms
コンパイル使用メモリ 197,240 KB
実行使用メモリ 49,188 KB
最終ジャッジ日時 2024-07-22 21:58:56
合計ジャッジ時間 53,229 ms
ジャッジサーバーID
(参考情報)
judge4 / judge3
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
5,248 KB
testcase_01 AC 2 ms
5,376 KB
testcase_02 AC 2 ms
5,376 KB
testcase_03 AC 3 ms
5,376 KB
testcase_04 AC 2 ms
5,376 KB
testcase_05 AC 2 ms
5,376 KB
testcase_06 AC 2 ms
5,376 KB
testcase_07 AC 2 ms
5,376 KB
testcase_08 AC 3 ms
5,376 KB
testcase_09 AC 2 ms
5,376 KB
testcase_10 AC 3 ms
5,376 KB
testcase_11 AC 2 ms
5,376 KB
testcase_12 AC 3 ms
5,376 KB
testcase_13 AC 1,621 ms
30,144 KB
testcase_14 AC 1,830 ms
30,412 KB
testcase_15 AC 1,161 ms
25,616 KB
testcase_16 AC 1,163 ms
25,988 KB
testcase_17 AC 1,758 ms
30,352 KB
testcase_18 AC 1,795 ms
30,188 KB
testcase_19 AC 1,696 ms
30,204 KB
testcase_20 AC 1,968 ms
30,956 KB
testcase_21 AC 3,698 ms
42,308 KB
testcase_22 AC 3,711 ms
42,508 KB
testcase_23 AC 3,715 ms
42,408 KB
testcase_24 AC 1,856 ms
30,584 KB
testcase_25 AC 1,718 ms
31,060 KB
testcase_26 AC 1,825 ms
30,444 KB
testcase_27 AC 610 ms
17,916 KB
testcase_28 AC 873 ms
24,964 KB
testcase_29 AC 705 ms
27,152 KB
testcase_30 AC 119 ms
28,416 KB
testcase_31 AC 153 ms
29,252 KB
testcase_32 AC 169 ms
28,248 KB
testcase_33 AC 4,501 ms
46,288 KB
testcase_34 AC 2,578 ms
31,884 KB
testcase_35 AC 2,274 ms
30,516 KB
testcase_36 AC 1,058 ms
30,508 KB
testcase_37 AC 1,176 ms
30,992 KB
testcase_38 AC 4,875 ms
49,188 KB
testcase_39 AC 837 ms
46,028 KB
testcase_40 AC 71 ms
28,092 KB
testcase_41 AC 2 ms
5,376 KB
testcase_42 AC 2 ms
5,376 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>
#include <random>
using namespace std; typedef unsigned long long _ulong; typedef long long int lint; typedef pair<lint, lint> plint; typedef pair<double long, double long> pld;
#define ALL(x) (x).begin(), (x).end()
#define SZ(x) ((lint)(x).size())
#define FOR(i, begin, end) for(lint i=(begin),i##_end_=(end);i<i##_end_;i++)
#define IFOR(i, begin, end) for(lint i=(end)-1,i##_begin_=(begin);i>=i##_begin_;i--)
#define REP(i, n) FOR(i,0,n)
#define IREP(i, n) IFOR(i,0,n)
#define endk '\n'
template<class T>bool chmax(T& a, const T& b) { if (a < b) { a = b; return 1; } return 0; }
template<class T>bool chmin(T& a, const T& b) { if (b < a) { a = b; return 1; } return 0; }
lint gcd(lint a, lint b) { if (b == 0) return a; else return gcd(b, a % b); }
lint ceil(lint a, lint b) { return (a + b - 1) / b; }
lint digit(lint a) { return (lint)log10(a); }
const lint MOD = 1e9 + 7, INF = 1e9;
lint dx[8] = { 1, 0, -1, 0, 1, -1, 1, -1 }, dy[8] = { 0, 1, 0, -1, -1, -1, 1, 1 };
void YN(bool flag) { cout << (flag ? "YES" : "NO") << endk; }
typedef pair<lint, string> Pa;
typedef pair<lint, plint> tlint;


template <class Cap, class Cost> struct mcf_graph {
public:
    mcf_graph() {}
    mcf_graph(int n) : _n(n), g(n) {}

    int add_edge(int from, int to, Cap cap, Cost cost) {
        assert(0 <= from && from < _n);
        assert(0 <= to && to < _n);
        int m = int(pos.size());
        pos.push_back({ from, int(g[from].size()) });
        g[from].push_back(_edge{ to, int(g[to].size()), cap, cost });
        g[to].push_back(_edge{ from, int(g[from].size()) - 1, 0, -cost });
        return m;
    }

    struct edge {
        int from, to;
        Cap cap, flow;
        Cost cost;
    };

    edge get_edge(int i) {
        int m = int(pos.size());
        assert(0 <= i && i < m);
        auto _e = g[pos[i].first][pos[i].second];
        auto _re = g[_e.to][_e.rev];
        return edge{
            pos[i].first, _e.to, _e.cap + _re.cap, _re.cap, _e.cost,
        };
    }
    std::vector<edge> edges() {
        int m = int(pos.size());
        std::vector<edge> result(m);
        for (int i = 0; i < m; i++) {
            result[i] = get_edge(i);
        }
        return result;
    }

    std::pair<Cap, Cost> flow(int s, int t) {
        return flow(s, t, std::numeric_limits<Cap>::max());
    }
    std::pair<Cap, Cost> flow(int s, int t, Cap flow_limit) {
        return slope(s, t, flow_limit).back();
    }
    std::vector<std::pair<Cap, Cost>> slope(int s, int t) {
        return slope(s, t, std::numeric_limits<Cap>::max());
    }
    std::vector<std::pair<Cap, Cost>> slope(int s, int t, Cap flow_limit) {
        assert(0 <= s && s < _n);
        assert(0 <= t && t < _n);
        assert(s != t);
        // variants (C = maxcost):
        // -(n-1)C <= dual[s] <= dual[i] <= dual[t] = 0
        // reduced cost (= e.cost + dual[e.from] - dual[e.to]) >= 0 for all edge
        std::vector<Cost> dual(_n, 0), dist(_n);
        std::vector<int> pv(_n), pe(_n);
        std::vector<bool> vis(_n);
        auto dual_ref = [&]() {
            std::fill(dist.begin(), dist.end(),
                std::numeric_limits<Cost>::max());
            std::fill(pv.begin(), pv.end(), -1);
            std::fill(pe.begin(), pe.end(), -1);
            std::fill(vis.begin(), vis.end(), false);
            struct Q {
                Cost key;
                int to;
                bool operator<(Q r) const { return key > r.key; }
            };
            std::priority_queue<Q> que;
            dist[s] = 0;
            que.push(Q{ 0, s });
            while (!que.empty()) {
                int v = que.top().to;
                que.pop();
                if (vis[v]) continue;
                vis[v] = true;
                if (v == t) break;
                // dist[v] = shortest(s, v) + dual[s] - dual[v]
                // dist[v] >= 0 (all reduced cost are positive)
                // dist[v] <= (n-1)C
                for (int i = 0; i < int(g[v].size()); i++) {
                    auto e = g[v][i];
                    if (vis[e.to] || !e.cap) continue;
                    // |-dual[e.to] + dual[v]| <= (n-1)C
                    // cost <= C - -(n-1)C + 0 = nC
                    Cost cost = e.cost - dual[e.to] + dual[v];
                    if (dist[e.to] - dist[v] > cost) {
                        dist[e.to] = dist[v] + cost;
                        pv[e.to] = v;
                        pe[e.to] = i;
                        que.push(Q{ dist[e.to], e.to });
                    }
                }
            }
            if (!vis[t]) {
                return false;
            }

            for (int v = 0; v < _n; v++) {
                if (!vis[v]) continue;
                // dual[v] = dual[v] - dist[t] + dist[v]
                //         = dual[v] - (shortest(s, t) + dual[s] - dual[t]) + (shortest(s, v) + dual[s] - dual[v])
                //         = - shortest(s, t) + dual[t] + shortest(s, v)
                //         = shortest(s, v) - shortest(s, t) >= 0 - (n-1)C
                dual[v] -= dist[t] - dist[v];
            }
            return true;
        };
        Cap flow = 0;
        Cost cost = 0, prev_cost = -1;
        std::vector<std::pair<Cap, Cost>> result;
        result.push_back({ flow, cost });
        while (flow < flow_limit) {
            if (!dual_ref()) break;
            Cap c = flow_limit - flow;
            for (int v = t; v != s; v = pv[v]) {
                c = std::min(c, g[pv[v]][pe[v]].cap);
            }
            for (int v = t; v != s; v = pv[v]) {
                auto& e = g[pv[v]][pe[v]];
                e.cap -= c;
                g[v][e.rev].cap += c;
            }
            Cost d = -dual[s];
            flow += c;
            cost += c * d;
            if (prev_cost == d) {
                result.pop_back();
            }
            result.push_back({ flow, cost });
            prev_cost = cost;
        }
        return result;
    }

private:
    int _n;

    struct _edge {
        int to, rev;
        Cap cap;
        Cost cost;
    };

    std::vector<std::pair<int, int>> pos;
    std::vector<std::vector<_edge>> g;
};



lint N;
map<char, lint> mp;
int main() {
	mp['y'] = 0;
	mp['u'] = 1;
	mp['k'] = 2;
	mp['i'] = 3;
	lint N;
	cin >> N;
	string str;
	cin >> str;
	vector<lint> arr(N);
	REP(i, N) {
		cin >> arr[i];
	}
	lint s = 2 * N, t = s + 1;
    mcf_graph<lint, lint> g(2 * N + 2);
	REP(i, N) {
		if (str[i] == 'y') {
			g.add_edge(s, i, 1, 0);
		}
		if (str[i] == 'i') {
			g.add_edge(N + i, t, 1, 0);
		}
		FOR(j, i + 1, N) {
			if (mp[str[i]] + 1 == mp[str[j]]) {
				g.add_edge(N + i, j, 1, 0);
			}
		}
	}
	REP(i, N) {
        g.add_edge(i, i + N, 1, INF - arr[i]);
	}
	g.add_edge(s, t, N, INF * 4);
    lint v = g.flow(s, t, N).second;
	cout << INF * 4 * N - v << endk;
}
0