結果
問題 | No.1287 えぬけー |
ユーザー | risujiroh |
提出日時 | 2020-11-13 23:06:07 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
TLE
|
実行時間 | - |
コード長 | 4,578 bytes |
コンパイル時間 | 2,604 ms |
コンパイル使用メモリ | 211,648 KB |
実行使用メモリ | 13,756 KB |
最終ジャッジ日時 | 2024-07-22 22:01:03 |
合計ジャッジ時間 | 6,187 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 22 ms
13,756 KB |
testcase_01 | AC | 23 ms
6,944 KB |
testcase_02 | AC | 24 ms
6,940 KB |
testcase_03 | AC | 33 ms
6,940 KB |
testcase_04 | AC | 28 ms
6,944 KB |
testcase_05 | TLE | - |
testcase_06 | -- | - |
testcase_07 | -- | - |
testcase_08 | -- | - |
ソースコード
#include <bits/stdc++.h> template <class T, class U, class AssociativeOp = std::multiplies<>> constexpr T power(T a, U n, T init = 1, AssociativeOp op = AssociativeOp{}) { static_assert(std::is_integral_v<U> and not std::is_same_v<U, bool>); assert(n >= 0); while (n) { if (n & 1) init = op(init, a); if (n >>= 1) a = op(a, a); } return init; } template <uint32_t Modulus> class ModularInt { using M = ModularInt; public: static_assert(int(Modulus) >= 1, "Modulus must be in the range [1, 2^31)"); static constexpr int modulus() { return Modulus; } static M raw(uint32_t v) { M res; return res.v_ = v, res; } ModularInt() : v_(0) {} ModularInt(int64_t v) : v_((v %= Modulus) < 0 ? v + Modulus : v) {} explicit operator int() const { return v_; } M& operator++() { return v_ = ++v_ == Modulus ? 0 : v_, *this; } M& operator--() { return --(v_ ? v_ : v_ = Modulus), *this; } M operator+() const { return *this; } M operator-() const { return raw(v_ ? Modulus - v_ : 0); } M& operator*=(M o) { return v_ = uint64_t(v_) * o.v_ % Modulus, *this; } M& operator/=(M o) { auto [inv, gcd] = extgcd(o.v_, Modulus); assert(gcd == 1); return *this *= inv; } M& operator+=(M o) { return v_ = int(v_ += o.v_ - Modulus) < 0 ? v_ + Modulus : v_, *this; } M& operator-=(M o) { return v_ = int(v_ -= o.v_) < 0 ? v_ + Modulus : v_, *this; } friend M operator++(M& a, int) { return std::exchange(a, ++M(a)); } friend M operator--(M& a, int) { return std::exchange(a, --M(a)); } friend M operator*(M a, M b) { return a *= b; } friend M operator/(M a, M b) { return a /= b; } friend M operator+(M a, M b) { return a += b; } friend M operator-(M a, M b) { return a -= b; } friend std::istream& operator>>(std::istream& is, M& x) { int64_t v; return is >> v, x = v, is; } friend std::ostream& operator<<(std::ostream& os, M x) { return os << x.v_; } friend bool operator==(M a, M b) { return a.v_ == b.v_; } friend bool operator!=(M a, M b) { return a.v_ != b.v_; } private: static std::array<int, 2> extgcd(int a, int b) { std::array x{1, 0}; while (b) std::swap(x[0] -= a / b * x[1], x[1]), std::swap(a %= b, b); return {x[0], a}; } uint32_t v_; }; #pragma region my_template struct Rep { struct I { int i; void operator++() { ++i; } int operator*() const { return i; } bool operator!=(I o) const { return i < *o; } }; const int l, r; Rep(int _l, int _r) : l(_l), r(_r) {} Rep(int n) : Rep(0, n) {} I begin() const { return {l}; } I end() const { return {r}; } }; struct Per { struct I { int i; void operator++() { --i; } int operator*() const { return i; } bool operator!=(I o) const { return i > *o; } }; const int l, r; Per(int _l, int _r) : l(_l), r(_r) {} Per(int n) : Per(0, n) {} I begin() const { return {r - 1}; } I end() const { return {l - 1}; } }; template <class F> struct Fix : private F { Fix(F f) : F(f) {} template <class... Args> decltype(auto) operator()(Args&&... args) const { return F::operator()(*this, std::forward<Args>(args)...); } }; template <class T = int> T scan() { T res; std::cin >> res; return res; } template <class T, class U = T> bool chmin(T& a, U&& b) { return b < a ? a = std::forward<U>(b), true : false; } template <class T, class U = T> bool chmax(T& a, U&& b) { return a < b ? a = std::forward<U>(b), true : false; } #ifndef LOCAL #define DUMP(...) void(0) template <int OnlineJudge, int Local> constexpr int OjLocal = OnlineJudge; #endif using namespace std; #define ALL(c) begin(c), end(c) #pragma endregion #define rep(i, a, b) for (int i = a; i < int(b); ++i) using ll = long long; ll modLog(ll a, ll b, ll m) { ll n = (ll)sqrt(m) + 1, e = 1, f = 1, j = 1; unordered_map<ll, ll> A; while (j <= n && (e = f = e * a % m) != b % m) A[e * b % m] = j++; if (e == b % m) return j; if (__gcd(m, e) == __gcd(m, b)) rep(i, 2, n + 2) if (A.count(e = e * f % m)) return n * i - A[e]; return -1; } using Mint7 = ModularInt<int(1e9) + 7>; using Mint6 = ModularInt<int(1e9) + 6>; int main() { cin.tie(nullptr)->sync_with_stdio(false); cout << fixed << setprecision(20); for (int tt = scan(); tt--;) { int x = scan(), k = scan(); Mint6 logx = modLog(5, x, int(1e9) + 7); cout << (x ? power<Mint7>(5, int(logx / k)) : 0) << '\n'; } }