結果

問題 No.1288 yuki collection
ユーザー どららどらら
提出日時 2020-11-14 02:17:58
言語 C++14
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 4,206 ms / 5,000 ms
コード長 6,596 bytes
コンパイル時間 2,343 ms
コンパイル使用メモリ 190,268 KB
実行使用メモリ 47,560 KB
最終ジャッジ日時 2024-07-22 22:38:14
合計ジャッジ時間 53,313 ms
ジャッジサーバーID
(参考情報)
judge4 / judge1
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
5,248 KB
testcase_01 AC 2 ms
5,376 KB
testcase_02 AC 2 ms
5,376 KB
testcase_03 AC 3 ms
5,376 KB
testcase_04 AC 2 ms
5,376 KB
testcase_05 AC 2 ms
5,376 KB
testcase_06 AC 2 ms
5,376 KB
testcase_07 AC 2 ms
5,376 KB
testcase_08 AC 3 ms
5,376 KB
testcase_09 AC 2 ms
5,376 KB
testcase_10 AC 3 ms
5,376 KB
testcase_11 AC 2 ms
5,376 KB
testcase_12 AC 3 ms
5,376 KB
testcase_13 AC 1,743 ms
30,164 KB
testcase_14 AC 1,907 ms
30,096 KB
testcase_15 AC 1,236 ms
25,904 KB
testcase_16 AC 1,329 ms
26,336 KB
testcase_17 AC 1,927 ms
30,048 KB
testcase_18 AC 1,910 ms
30,280 KB
testcase_19 AC 1,808 ms
29,980 KB
testcase_20 AC 2,080 ms
31,060 KB
testcase_21 AC 4,061 ms
42,244 KB
testcase_22 AC 4,015 ms
42,380 KB
testcase_23 AC 3,950 ms
42,472 KB
testcase_24 AC 1,895 ms
30,940 KB
testcase_25 AC 1,854 ms
30,980 KB
testcase_26 AC 1,914 ms
30,792 KB
testcase_27 AC 558 ms
17,976 KB
testcase_28 AC 868 ms
24,804 KB
testcase_29 AC 749 ms
27,316 KB
testcase_30 AC 103 ms
28,596 KB
testcase_31 AC 141 ms
29,072 KB
testcase_32 AC 152 ms
28,528 KB
testcase_33 AC 3,995 ms
46,280 KB
testcase_34 AC 2,497 ms
31,744 KB
testcase_35 AC 1,960 ms
30,552 KB
testcase_36 AC 879 ms
32,068 KB
testcase_37 AC 995 ms
31,932 KB
testcase_38 AC 4,206 ms
47,560 KB
testcase_39 AC 784 ms
45,764 KB
testcase_40 AC 49 ms
27,828 KB
testcase_41 AC 2 ms
5,376 KB
testcase_42 AC 2 ms
5,376 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>
//#include <atcoder/all>

#include <algorithm>
#include <cassert>
#include <limits>
#include <queue>
#include <vector>

namespace atcoder {

template <class Cap, class Cost> struct mcf_graph {
  public:
    mcf_graph() {}
    mcf_graph(int n) : _n(n), g(n) {}

    int add_edge(int from, int to, Cap cap, Cost cost) {
        assert(0 <= from && from < _n);
        assert(0 <= to && to < _n);
        int m = int(pos.size());
        pos.push_back({from, int(g[from].size())});
        int from_id = int(g[from].size());
        int to_id = int(g[to].size());
        if (from == to) to_id++;
        g[from].push_back(_edge{to, to_id, cap, cost});
        g[to].push_back(_edge{from, from_id, 0, -cost});
        return m;
    }

    struct edge {
        int from, to;
        Cap cap, flow;
        Cost cost;
    };

    edge get_edge(int i) {
        int m = int(pos.size());
        assert(0 <= i && i < m);
        auto _e = g[pos[i].first][pos[i].second];
        auto _re = g[_e.to][_e.rev];
        return edge{
            pos[i].first, _e.to, _e.cap + _re.cap, _re.cap, _e.cost,
        };
    }
    std::vector<edge> edges() {
        int m = int(pos.size());
        std::vector<edge> result(m);
        for (int i = 0; i < m; i++) {
            result[i] = get_edge(i);
        }
        return result;
    }

    std::pair<Cap, Cost> flow(int s, int t) {
        return flow(s, t, std::numeric_limits<Cap>::max());
    }
    std::pair<Cap, Cost> flow(int s, int t, Cap flow_limit) {
        return slope(s, t, flow_limit).back();
    }
    std::vector<std::pair<Cap, Cost>> slope(int s, int t) {
        return slope(s, t, std::numeric_limits<Cap>::max());
    }
    std::vector<std::pair<Cap, Cost>> slope(int s, int t, Cap flow_limit) {
        assert(0 <= s && s < _n);
        assert(0 <= t && t < _n);
        assert(s != t);
        // variants (C = maxcost):
        // -(n-1)C <= dual[s] <= dual[i] <= dual[t] = 0
        // reduced cost (= e.cost + dual[e.from] - dual[e.to]) >= 0 for all edge
        std::vector<Cost> dual(_n, 0), dist(_n);
        std::vector<int> pv(_n), pe(_n);
        std::vector<bool> vis(_n);
        auto dual_ref = [&]() {
            std::fill(dist.begin(), dist.end(),
                      std::numeric_limits<Cost>::max());
            std::fill(pv.begin(), pv.end(), -1);
            std::fill(pe.begin(), pe.end(), -1);
            std::fill(vis.begin(), vis.end(), false);
            struct Q {
                Cost key;
                int to;
                bool operator<(Q r) const { return key > r.key; }
            };
            std::priority_queue<Q> que;
            dist[s] = 0;
            que.push(Q{0, s});
            while (!que.empty()) {
                int v = que.top().to;
                que.pop();
                if (vis[v]) continue;
                vis[v] = true;
                if (v == t) break;
                // dist[v] = shortest(s, v) + dual[s] - dual[v]
                // dist[v] >= 0 (all reduced cost are positive)
                // dist[v] <= (n-1)C
                for (int i = 0; i < int(g[v].size()); i++) {
                    auto e = g[v][i];
                    if (vis[e.to] || !e.cap) continue;
                    // |-dual[e.to] + dual[v]| <= (n-1)C
                    // cost <= C - -(n-1)C + 0 = nC
                    Cost cost = e.cost - dual[e.to] + dual[v];
                    if (dist[e.to] - dist[v] > cost) {
                        dist[e.to] = dist[v] + cost;
                        pv[e.to] = v;
                        pe[e.to] = i;
                        que.push(Q{dist[e.to], e.to});
                    }
                }
            }
            if (!vis[t]) {
                return false;
            }

            for (int v = 0; v < _n; v++) {
                if (!vis[v]) continue;
                // dual[v] = dual[v] - dist[t] + dist[v]
                //         = dual[v] - (shortest(s, t) + dual[s] - dual[t]) + (shortest(s, v) + dual[s] - dual[v])
                //         = - shortest(s, t) + dual[t] + shortest(s, v)
                //         = shortest(s, v) - shortest(s, t) >= 0 - (n-1)C
                dual[v] -= dist[t] - dist[v];
            }
            return true;
        };
        Cap flow = 0;
        Cost cost = 0, prev_cost_per_flow = -1;
        std::vector<std::pair<Cap, Cost>> result;
        result.push_back({flow, cost});
        while (flow < flow_limit) {
            if (!dual_ref()) break;
            Cap c = flow_limit - flow;
            for (int v = t; v != s; v = pv[v]) {
                c = std::min(c, g[pv[v]][pe[v]].cap);
            }
            for (int v = t; v != s; v = pv[v]) {
                auto& e = g[pv[v]][pe[v]];
                e.cap -= c;
                g[v][e.rev].cap += c;
            }
            Cost d = -dual[s];
            flow += c;
            cost += c * d;
            if (prev_cost_per_flow == d) {
                result.pop_back();
            }
            result.push_back({flow, cost});
            prev_cost_per_flow = d;
        }
        return result;
    }

  private:
    int _n;

    struct _edge {
        int to, rev;
        Cap cap;
        Cost cost;
    };

    std::vector<std::pair<int, int>> pos;
    std::vector<std::vector<_edge>> g;
};

}  // namespace atcoder

using namespace std;
using namespace atcoder;
#define REP(i,a,n) for(int i=(a); i<(int)(n); i++)
#define rep(i,n) REP(i,0,n)
#define FOR(it,c) for(__typeof((c).begin()) it=(c).begin(); it!=(c).end(); ++it)
#define ALLOF(c) (c).begin(), (c).end()
typedef long long ll;
typedef unsigned long long ull;

static const ll BIG = 1e15;

int main(){
  int N;
  cin >> N;
  string S;
  cin >> S;
  vector<ll> v;
  rep(i,N){
    ll a;
    cin >> a;
    v.push_back(a);
  }

  mcf_graph<ll,ll> mcf(2*N+2);
  int s = 2*N;
  int t = s+1;

  
  rep(i,N){
    if(S[i] == 'y'){
      mcf.add_edge(s, i, 1, BIG-v[i]);
    }
    mcf.add_edge(i, i+N, 1, 0);
    if(S[i] == 'i'){
      mcf.add_edge(i+N, t, 1, 0);
    }
    rep(j,N){
      if(S[i] == 'y' && S[j] == 'u'){
        if(i<j){
          mcf.add_edge(i+N, j, 1, BIG-v[j]);
        }
      }
      if(S[i] == 'u' && S[j] == 'k'){
        if(i<j){
          mcf.add_edge(i+N, j, 1, BIG-v[j]);
        }
      }
      if(S[i] == 'k' && S[j] == 'i'){
        if(i<j){
          mcf.add_edge(i+N, j, 1, BIG-v[j]);
        }
      }
    }
  }

  ll ret = 0;
  vector<pair<ll,ll>> res = mcf.slope(s,t,N);
  rep(i,res.size()){
    ret = max(ret, res[i].first*4*BIG-res[i].second);
  }

  cout << ret << endl;
  
  return 0;
}
0