結果
| 問題 |
No.1285 ゴミ捨て
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2020-11-16 17:28:40 |
| 言語 | Haskell (9.10.1) |
| 結果 |
CE
(最新)
AC
(最初)
|
| 実行時間 | - |
| コード長 | 7,936 bytes |
| コンパイル時間 | 1,413 ms |
| コンパイル使用メモリ | 203,392 KB |
| 最終ジャッジ日時 | 2024-11-15 05:02:06 |
| 合計ジャッジ時間 | 2,841 ms |
|
ジャッジサーバーID (参考情報) |
judge3 / judge4 |
(要ログイン)
コンパイルエラー時のメッセージ・ソースコードは、提出者また管理者しか表示できないようにしております。(リジャッジ後のコンパイルエラーは公開されます)
ただし、clay言語の場合は開発者のデバッグのため、公開されます。
ただし、clay言語の場合は開発者のデバッグのため、公開されます。
コンパイルメッセージ
Loaded package environment from /home/judge/.ghc/x86_64-linux-9.8.2/environments/default
[1 of 2] Compiling Main ( Main.hs, Main.o )
Main.hs:51:33: error: [GHC-87543]
Ambiguous occurrence ‘.>>.’.
It could refer to
either ‘Data.Bits..>>.’,
imported from ‘Data.Bits’ at Main.hs:11:1-26,
or ‘Main..>>.’, defined at Main.hs:115:1.
|
51 | mask k x = fromIntegral $ x .>>. k .&. 0xffff
| ^^^^
Main.hs:80:33: error: [GHC-87543]
Ambiguous occurrence ‘.>>.’.
It could refer to
either ‘Data.Bits..>>.’,
imported from ‘Data.Bits’ at Main.hs:11:1-26,
or ‘Main..>>.’, defined at Main.hs:115:1.
|
80 | mask k x = fromIntegral $ x .>>. k .&. 0xffff
| ^^^^
Main.hs:99:14: error: [GHC-87543]
Ambiguous occurrence ‘.>>.’.
It could refer to
either ‘Data.Bits..>>.’,
imported from ‘Data.Bits’ at Main.hs:11:1-26,
or ‘Main..>>.’, defined at Main.hs:115:1.
|
99 | if x .>>. 32 == y .>>. 32
| ^^^^
Main.hs:99:27: error: [GHC-87543]
Ambiguous occurrence ‘.>>.’.
It could refer to
either ‘Data.Bits..>>.’,
imported from ‘Data.Bits’ at Main.hs:11:1-26,
or ‘Main..>>.’, defined at Main.hs:115:1.
|
99 | if x .>>. 32 == y .>>. 32
| ^^^^
Main.hs:104:26: error: [GHC-87543]
Ambiguous occurrence ‘.<<.’.
It could refer to
either ‘Data.Bits..<<.’,
imported from ‘Data.Bits’ at Main.hs:11:1-26,
or ‘Main..<<.’, defined at Main.hs:111:1.
|
104 | $ VU.imap (\i x -> x .<<. 32 .|. i) vec
| ^^^^
Main.hs:134:24: error: [GHC-87543]
Ambiguous occurrence ‘.<<.’.
It could refer to
either ‘Data.Bits..<<.’,
imported fr
ソースコード
{-# LANGUAGE BangPatterns #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE TupleSections #-}
module Main where
import Control.Monad
import Control.Monad.Cont
import Control.Monad.ST
import Control.Monad.State
import Data.Bits
import qualified Data.ByteString.Char8 as BSC8
import Data.Char
import Data.Coerce
import qualified Data.Foldable as F
import Data.IORef
import qualified Data.Vector.Fusion.Stream.Monadic as VFSM
import qualified Data.Vector.Unboxed as VU
import qualified Data.Vector.Unboxed.Mutable as VUM
import Data.Word
import Unsafe.Coerce
main :: IO ()
main = do
n <- readLn :: IO Int
a <- radixSortInt <$> parseN1 n
check <- newIORef True
rep (n - 1) $ \i -> when (a VU.! i == a VU.! (i + 1) - 1) $ do
writeIORef check False
b <- readIORef check
if b
then putStrLn "1"
else putStrLn "2"
type CParser a = StateT BSC8.ByteString Maybe a
runCParser :: CParser a -> BSC8.ByteString -> Maybe (a, BSC8.ByteString)
runCParser = runStateT
{-# INLINE runCParser #-}
int :: CParser Int
int = coerce $ BSC8.readInt . BSC8.dropWhile isSpace
{-# INLINE int #-}
parseN1 :: Int -> IO (VU.Vector Int)
parseN1 n = VU.unfoldrN n (runCParser int) <$> BSC8.getContents
{-# INLINE parseN1 #-}
radixSort64 :: VU.Vector Word64 -> VU.Vector Word64
radixSort64 vword = F.foldl' step vword [0,16,32,48]
where
mask k x = fromIntegral $ x .>>. k .&. 0xffff
step v k = VU.create $ do
pref <- VU.unsafeThaw
. VU.prescanl' (+) 0
. VU.unsafeAccumulate (+) (VU.replicate 0x10000 0)
$ VU.map ((, 1) . mask k) v
res <- VUM.unsafeNew $ VU.length v
VU.forM_ v $ \x -> do
let !masked = mask k x
i <- VUM.unsafeRead pref masked
VUM.unsafeWrite pref masked $ i + 1
VUM.unsafeWrite res i x
return res
{-# INLINE radixSort64 #-}
radixSort :: (VU.Unbox a, Word64Encode a) => VU.Vector a -> VU.Vector a
radixSort = VU.map decode64 . radixSort64 . VU.map encode64
{-# INLINE radixSort #-}
radixSortInt :: VU.Vector Int -> VU.Vector Int
radixSortInt = unsafeCoerce . radixSort64 . unsafeCoerce
radixSortNonNegative :: (VU.Unbox a, Word64Encode a) => VU.Vector a -> VU.Vector a
radixSortNonNegative = VU.map decodeNonNegative64 . radixSort64 . VU.map encodeNonNegative64
{-# INLINE radixSortNonNegative #-}
radixSort32 :: VU.Vector Word32 -> VU.Vector Word32
radixSort32 vec = F.foldl' step vec [0, 16]
where
mask k x = fromIntegral $ x .>>. k .&. 0xffff
step v k = VU.create $ do
pref <- VU.unsafeThaw
. VU.prescanl' (+) 0
. VU.unsafeAccumulate (+) (VU.replicate 0x10000 0)
$ VU.map ((, 1) . mask k) v
res <- VUM.unsafeNew $ VU.length v
VU.forM_ v $ \x -> do
let !masked = mask k x
i <- VUM.unsafeRead pref masked
VUM.unsafeWrite pref masked $ i + 1
VUM.unsafeWrite res i x
return res
{-# INLINE radixSort32 #-}
compress :: VU.Vector Int -> VU.Vector Int
compress vec = VU.create $ do
mvec <- VUM.unsafeNew (VU.length vec)
VU.mapM_ (\(i, x) -> VUM.unsafeWrite mvec (x .&. 0xffffffff) i) . VU.postscanl' (\(!i, !x) y ->
if x .>>. 32 == y .>>. 32
then (i, y)
else (i + 1, y)
) (-1, -1)
. radixSortInt
$ VU.imap (\i x -> x .<<. 32 .|. i) vec
return mvec
{-# INLINE compress #-}
infixl 8 .<<., .>>.
(.<<.) :: Bits b => b -> Int -> b
(.<<.) = unsafeShiftL
{-# INLINE (.<<.) #-}
(.>>.) :: Bits b => b -> Int -> b
(.>>.) = unsafeShiftR
{-# INLINE (.>>.) #-}
class Word64Encode a where
encode64 :: a -> Word64
decode64 :: Word64 -> a
encodeNonNegative64 :: a -> Word64
encodeNonNegative64 = encode64
decodeNonNegative64 :: Word64 -> a
decodeNonNegative64 = decode64
instance Word64Encode Int where
encode64 x = unsafeCoerce $ x + 0x3fffffffffffffff
decode64 x = unsafeCoerce x - 0x3fffffffffffffff
encodeNonNegative64 = unsafeCoerce
decodeNonNegative64 = unsafeCoerce
instance Word64Encode (Int, Int) where
encode64 (x, y) = unsafeCoerce
$ (x + 0x3fffffff) .<<. 31 .|. (y + 0x3fffffff)
decode64 xy = unsafeCoerce (x, y)
where
!x = xy .>>. 31 - 0x3fffffff
!y = (xy .&. 0x7fffffff) - 0x3fffffff
encodeNonNegative64 (x, y) = unsafeCoerce $ x .<<. 31 .|. y
decodeNonNegative64 xy = unsafeCoerce (x, y)
where
!x = xy .>>. 31
!y = xy .&. 0x7fffffff
instance Word64Encode (Int, Int, Int) where
encode64 (x, y, z) = unsafeCoerce $ ((x + 0xfffff) .<<. 21 .|. (y + 0xfffff)) .<<. 21 .|. (z + 0xfffff)
decode64 xyz = unsafeCoerce (x, y, z)
where
!x = xyz .>>. 42 - 0xfffff
!y = (xyz .>>. 21 .&. 0x1fffff) - 0xfffff
!z = xyz .&. 0x1fffff - 0xfffff
encodeNonNegative64 (x, y, z) = unsafeCoerce $ (x .<<. 21 .|. y) .<<. 21 .|. z
decodeNonNegative64 xyz = unsafeCoerce (x, y, z)
where
!x = xyz .>>. 42
!y = xyz .>>. 21 .&. 0x1fffff
!z = xyz .&. 0x1fffff
-- | l -> x -> r, +d
stream :: Monad m => Int -> Int -> Int -> VFSM.Stream m Int
stream !l !r !d = VFSM.Stream step l
where
step x
| x <= r = return $ VFSM.Yield x (x + d)
| otherwise = return VFSM.Done
{-# INLINE [0] step #-}
{-# INLINE [1] stream #-}
-- | 0 <= x < n, interval = 1
rep :: Monad m => Int -> (Int -> m ()) -> m ()
rep n = flip VFSM.mapM_ (stream 0 (n - 1) 1)
{-# INLINE rep #-}
-- | 0 <= x <= n, interval = 1
rep' :: Monad m => Int -> (Int -> m ()) -> m ()
rep' n = flip VFSM.mapM_ (stream 0 n 1)
{-# INLINE rep' #-}
-- | 1 <= x < n, interval = 1
rep1 :: Monad m => Int -> (Int -> m ()) -> m ()
rep1 n = flip VFSM.mapM_ (stream 1 (n - 1) 1)
{-# INLINE rep1 #-}
-- | 1 <= x <= n, interval = 1
rep1' :: Monad m => Int -> (Int -> m ()) -> m ()
rep1' n = flip VFSM.mapM_ (stream 1 n 1)
{-# INLINE rep1' #-}
-- | l <= x <= r, interval = d
for :: Monad m => Int -> Int -> Int -> (Int -> m ()) -> m ()
for l r d = flip VFSM.mapM_ (stream l r d)
{-# INLINE for #-}
-- | r -> x -> l, -d
streamR :: Monad m => Int -> Int -> Int -> VFSM.Stream m Int
streamR !r !l !d = VFSM.Stream step r
where
step x
| x >= l = return $ VFSM.Yield x (x - d)
| otherwise = return VFSM.Done
{-# INLINE [0] step #-}
{-# INLINE [1] streamR #-}
-- | n > x >= 0, interval = -1
rev :: Monad m => Int -> (Int -> m ()) -> m ()
rev n = flip VFSM.mapM_ (streamR (n - 1) 0 1)
{-# INLINE rev #-}
-- | n >= x >= 0, interval = -1
rev' :: Monad m => Int -> (Int -> m ()) -> m ()
rev' n = flip VFSM.mapM_ (streamR n 0 1)
{-# INLINE rev' #-}
-- | n > x >= 1, interval = -1
rev1 :: Monad m => Int -> (Int -> m ()) -> m ()
rev1 n = flip VFSM.mapM_ (streamR (n - 1) 1 1)
{-# INLINE rev1 #-}
-- | n >= x >= 1, interval = -1
rev1' :: Monad m => Int -> (Int -> m ()) -> m ()
rev1' n = flip VFSM.mapM_ (streamR n 1 1)
{-# INLINE rev1' #-}
-- | r >= x >= l, interval = -d
forR :: Monad m => Int -> Int -> Int -> (Int -> m ()) -> m ()
forR r l d = flip VFSM.mapM_ (streamR r l d)
{-# INLINE forR #-}
-- | for (int i = l; f(i, p) <= r ; g(i, d))
streamG :: Monad m => Int -> Int -> (Int -> Int -> Int) -> Int -> (Int -> Int -> Int) -> Int -> VFSM.Stream m Int
streamG l r f p g d = VFSM.Stream step l
where
step x
| f x p <= r = return $ VFSM.Yield x (g x d)
| otherwise = return VFSM.Done
{-# INLINE [0] step #-}
{-# INLINE [1] streamG #-}
forG :: Monad m => Int -> Int -> (Int -> Int -> Int) -> Int -> (Int -> Int -> Int) -> Int -> (Int -> m ()) -> m ()
forG l r f p g d = flip VFSM.mapM_ (streamG l r f p g d)
{-# INLINE forG #-}
withBreakIO :: ((r -> ContT r IO b) -> ContT r IO r) -> IO r
withBreakIO = flip runContT pure . callCC
{-# INLINE withBreakIO #-}
withBreakST :: ((r -> ContT r (ST s) b) -> ContT r (ST s) r) -> (ST s) r
withBreakST = flip runContT pure . callCC
{-# INLINE withBreakST #-}