結果
| 問題 |
No.1285 ゴミ捨て
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2020-11-16 17:37:04 |
| 言語 | Haskell (9.10.1) |
| 結果 |
AC
|
| 実行時間 | 39 ms / 2,000 ms |
| コード長 | 8,328 bytes |
| コンパイル時間 | 4,901 ms |
| コンパイル使用メモリ | 258,688 KB |
| 実行使用メモリ | 12,160 KB |
| 最終ジャッジ日時 | 2024-11-28 21:55:00 |
| 合計ジャッジ時間 | 6,333 ms |
|
ジャッジサーバーID (参考情報) |
judge4 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 2 |
| other | AC * 22 |
コンパイルメッセージ
Loaded package environment from /home/judge/.ghc/x86_64-linux-9.8.2/environments/default [1 of 2] Compiling Main ( Main.hs, Main.o ) [2 of 2] Linking a.out
ソースコード
{-# LANGUAGE BangPatterns #-}
{-# LANGUAGE FlexibleInstances #-}
module Main where
import Control.Monad
import Control.Monad.Cont
import Control.Monad.Fix
import Control.Monad.ST
import Control.Monad.State
import Data.Bits
import qualified Data.ByteString.Char8 as BSC8
import Data.Char
import Data.Coerce
import Data.IORef
import qualified Data.Vector.Fusion.Stream.Monadic as VFSM
import Data.Word
import qualified Data.Vector.Generic as VG
import qualified Data.Vector.Generic.Mutable as VGM
import qualified Data.Vector.Unboxed as VU
import Unsafe.Coerce
main :: IO ()
main = do
n <- readLn :: IO Int
a <- introSort <$> parseN1 n
check <- newIORef True
rep (n - 1) $ \i -> when (a VU.! i == a VU.! (i + 1) - 1) $ writeIORef check False
b <- readIORef check
if b
then putStrLn "1"
else putStrLn "2"
type CParser a = StateT BSC8.ByteString Maybe a
runCParser :: CParser a -> BSC8.ByteString -> Maybe (a, BSC8.ByteString)
runCParser = runStateT
{-# INLINE runCParser #-}
int :: CParser Int
int = coerce $ BSC8.readInt . BSC8.dropWhile isSpace
{-# INLINE int #-}
parseN1 :: Int -> IO (VU.Vector Int)
parseN1 n = VU.unfoldrN n (runCParser int) <$> BSC8.getContents
{-# INLINE parseN1 #-}
introSort :: (Ord a, VG.Vector v a) => v a -> v a
introSort = introSortBy compare
introSortBy :: VG.Vector v a => (a -> a -> Ordering) -> v a -> v a
introSortBy cmp = VG.modify $ inplaceIntroSortBy cmp
inplaceIntroSortBy :: VGM.MVector mv a => (a -> a -> Ordering) -> mv s a -> ST s ()
inplaceIntroSortBy cmp vec = do
let depthLimit = 2 * floorLog2 (VGM.length vec)
threshold = 16
fix `flip` depthLimit `flip` vec $ \loop !depth mv ->
when (VGM.length mv > threshold) $
if depth > 0
then do
pivot <- getMedian3Pivot cmp mv
cut <- pivotPartition cmp mv pivot
loop (depth - 1) (VGM.unsafeDrop cut mv)
loop (depth - 1) (VGM.unsafeTake cut mv)
else inplaceHeapSortBy cmp mv
inplaceInsertionSortBy cmp vec
where
floorLog2 :: Int -> Int
floorLog2 x = fromIntegral $ y `unsafeShiftR` 52 - 1023
where
y :: Word64
y = unsafeCoerce (fromIntegral x :: Double)
pivotPartition :: (VGM.MVector mv a) => (a -> a -> Ordering) -> mv s a -> a -> ST s Int
pivotPartition cmp vec pivot = fix `flip` 0 `flip` VGM.length vec $ \loop !l !r -> do
!l' <- flip fix l $ \loopL !i -> do
x <- VGM.unsafeRead vec i
case cmp x pivot of
LT -> loopL (i + 1)
_ -> return i
!r' <- flip fix (r - 1) $ \loopR !i -> do
x <- VGM.unsafeRead vec i
case cmp pivot x of
LT -> loopR (i - 1)
_ -> return i
if l' < r'
then do
VGM.unsafeSwap vec l' r'
loop (l' + 1) r'
else return l'
{-# INLINE pivotPartition #-}
getMedian3Pivot :: VGM.MVector mv a => (a -> a -> Ordering) -> mv s a -> ST s a
getMedian3Pivot cmp vec = median cmp <$> VGM.unsafeRead vec 0 <*> VGM.unsafeRead vec (VGM.length vec `quot` 2) <*> VGM.unsafeRead vec (VGM.length vec - 1)
{-# INLINE getMedian3Pivot #-}
median :: (a -> a -> Ordering) -> a -> a -> a -> a
median cmp x y z = case cmp x y of
LT -> case cmp y z of
LT -> y
_ -> case cmp x z of
LT -> z
_ -> x
_ -> case cmp x z of
LT -> x
_ -> case cmp y z of
LT -> z
_ -> y
{-# INLINE median #-}
inplaceInsertionSortBy :: VGM.MVector mv a => (a -> a -> Ordering) -> mv s a -> ST s ()
inplaceInsertionSortBy cmp vec =
for 1 (VGM.length vec - 1) 1 $ \i -> do
x <- VGM.unsafeRead vec i
hd <- VGM.unsafeRead vec 0
case cmp hd x of
LT -> flip fix i $ \loop !j -> do
y <- VGM.unsafeRead vec (j - 1)
case cmp x y of
LT -> do
VGM.unsafeWrite vec j y
loop (j - 1)
_ -> VGM.unsafeWrite vec j x
_ -> flip fix i $ \loop !j ->
if j > 0
then do
VGM.unsafeRead vec (j - 1) >>= VGM.unsafeWrite vec j
loop (j - 1)
else VGM.unsafeWrite vec 0 x
{-# INLINE inplaceInsertionSortBy #-}
siftDown :: VGM.MVector mv a => (a -> a -> Ordering) -> Int -> mv s a -> ST s ()
siftDown cmp offset vec = do
let !len = VGM.length vec
flip fix offset $ \loop !parent -> do
let !l = 2 * parent + 1
!r = l + 1
x <- VGM.unsafeRead vec parent
when (l < len) $ do
childL <- VGM.unsafeRead vec l
if r < len
then do
childR <- VGM.unsafeRead vec r
case cmp childL childR of
LT -> when (cmp x childR == LT) $ do
VGM.unsafeSwap vec parent r
loop r
_ -> when (cmp x childL == LT) $ do
VGM.unsafeSwap vec parent l
loop l
else when (cmp x childL == LT) $ do
VGM.unsafeSwap vec parent l
loop l
{-# INLINE siftDown #-}
heapify :: VGM.MVector mv a => (a -> a -> Ordering) -> mv s a -> ST s ()
heapify cmp vec = rev (VGM.length vec `quot` 2) $ \i -> siftDown cmp i vec
{-# INLINE heapify #-}
inplaceHeapSortBy :: VGM.MVector mv a => (a -> a -> Ordering) -> mv s a -> ST s ()
inplaceHeapSortBy cmp vec = do
heapify cmp vec
flip fix (VGM.length vec - 1) $ \loop !i ->
when (i > 0) $ do
VGM.unsafeSwap vec 0 i
siftDown cmp 0 $ VGM.unsafeTake i vec
loop (i - 1)
{-# INLINE inplaceHeapSortBy #-}
-- | l -> x -> r, +d
stream :: Monad m => Int -> Int -> Int -> VFSM.Stream m Int
stream !l !r !d = VFSM.Stream step l
where
step x
| x <= r = return $ VFSM.Yield x (x + d)
| otherwise = return VFSM.Done
{-# INLINE [0] step #-}
{-# INLINE [1] stream #-}
-- | 0 <= x < n, interval = 1
rep :: Monad m => Int -> (Int -> m ()) -> m ()
rep n = flip VFSM.mapM_ (stream 0 (n - 1) 1)
{-# INLINE rep #-}
-- | 0 <= x <= n, interval = 1
rep' :: Monad m => Int -> (Int -> m ()) -> m ()
rep' n = flip VFSM.mapM_ (stream 0 n 1)
{-# INLINE rep' #-}
-- | 1 <= x < n, interval = 1
rep1 :: Monad m => Int -> (Int -> m ()) -> m ()
rep1 n = flip VFSM.mapM_ (stream 1 (n - 1) 1)
{-# INLINE rep1 #-}
-- | 1 <= x <= n, interval = 1
rep1' :: Monad m => Int -> (Int -> m ()) -> m ()
rep1' n = flip VFSM.mapM_ (stream 1 n 1)
{-# INLINE rep1' #-}
-- | l <= x <= r, interval = d
for :: Monad m => Int -> Int -> Int -> (Int -> m ()) -> m ()
for l r d = flip VFSM.mapM_ (stream l r d)
{-# INLINE for #-}
-- | r -> x -> l, -d
streamR :: Monad m => Int -> Int -> Int -> VFSM.Stream m Int
streamR !r !l !d = VFSM.Stream step r
where
step x
| x >= l = return $ VFSM.Yield x (x - d)
| otherwise = return VFSM.Done
{-# INLINE [0] step #-}
{-# INLINE [1] streamR #-}
-- | n > x >= 0, interval = -1
rev :: Monad m => Int -> (Int -> m ()) -> m ()
rev n = flip VFSM.mapM_ (streamR (n - 1) 0 1)
{-# INLINE rev #-}
-- | n >= x >= 0, interval = -1
rev' :: Monad m => Int -> (Int -> m ()) -> m ()
rev' n = flip VFSM.mapM_ (streamR n 0 1)
{-# INLINE rev' #-}
-- | n > x >= 1, interval = -1
rev1 :: Monad m => Int -> (Int -> m ()) -> m ()
rev1 n = flip VFSM.mapM_ (streamR (n - 1) 1 1)
{-# INLINE rev1 #-}
-- | n >= x >= 1, interval = -1
rev1' :: Monad m => Int -> (Int -> m ()) -> m ()
rev1' n = flip VFSM.mapM_ (streamR n 1 1)
{-# INLINE rev1' #-}
-- | r >= x >= l, interval = -d
forR :: Monad m => Int -> Int -> Int -> (Int -> m ()) -> m ()
forR r l d = flip VFSM.mapM_ (streamR r l d)
{-# INLINE forR #-}
-- | for (int i = l; f(i, p) <= r ; g(i, d))
streamG :: Monad m => Int -> Int -> (Int -> Int -> Int) -> Int -> (Int -> Int -> Int) -> Int -> VFSM.Stream m Int
streamG l r f p g d = VFSM.Stream step l
where
step x
| f x p <= r = return $ VFSM.Yield x (g x d)
| otherwise = return VFSM.Done
{-# INLINE [0] step #-}
{-# INLINE [1] streamG #-}
forG :: Monad m => Int -> Int -> (Int -> Int -> Int) -> Int -> (Int -> Int -> Int) -> Int -> (Int -> m ()) -> m ()
forG l r f p g d = flip VFSM.mapM_ (streamG l r f p g d)
{-# INLINE forG #-}
withBreakIO :: ((r -> ContT r IO b) -> ContT r IO r) -> IO r
withBreakIO = flip runContT pure . callCC
{-# INLINE withBreakIO #-}
withBreakST :: ((r -> ContT r (ST s) b) -> ContT r (ST s) r) -> (ST s) r
withBreakST = flip runContT pure . callCC
{-# INLINE withBreakST #-}