結果

問題 No.1285 ゴミ捨て
ユーザー こまるこまる
提出日時 2020-11-16 17:37:04
言語 Haskell
(9.8.2)
結果
AC  
実行時間 41 ms / 2,000 ms
コード長 8,328 bytes
コンパイル時間 5,141 ms
コンパイル使用メモリ 259,072 KB
実行使用メモリ 12,288 KB
最終ジャッジ日時 2024-05-06 14:38:52
合計ジャッジ時間 6,482 ms
ジャッジサーバーID
(参考情報)
judge1 / judge3
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 1 ms
6,816 KB
testcase_01 AC 1 ms
6,816 KB
testcase_02 AC 2 ms
6,940 KB
testcase_03 AC 2 ms
6,944 KB
testcase_04 AC 1 ms
6,944 KB
testcase_05 AC 2 ms
6,940 KB
testcase_06 AC 2 ms
6,944 KB
testcase_07 AC 40 ms
12,160 KB
testcase_08 AC 4 ms
6,944 KB
testcase_09 AC 19 ms
10,240 KB
testcase_10 AC 35 ms
11,776 KB
testcase_11 AC 32 ms
11,648 KB
testcase_12 AC 24 ms
10,496 KB
testcase_13 AC 24 ms
10,496 KB
testcase_14 AC 37 ms
12,160 KB
testcase_15 AC 28 ms
10,624 KB
testcase_16 AC 10 ms
9,216 KB
testcase_17 AC 10 ms
9,344 KB
testcase_18 AC 10 ms
9,088 KB
testcase_19 AC 18 ms
10,112 KB
testcase_20 AC 9 ms
8,960 KB
testcase_21 AC 12 ms
9,472 KB
testcase_22 AC 40 ms
12,160 KB
testcase_23 AC 41 ms
12,288 KB
権限があれば一括ダウンロードができます
コンパイルメッセージ
Loaded package environment from /home/judge/.ghc/x86_64-linux-9.8.2/environments/default
[1 of 2] Compiling Main             ( Main.hs, Main.o )
[2 of 2] Linking a.out

ソースコード

diff #

{-# LANGUAGE BangPatterns      #-}
{-# LANGUAGE FlexibleInstances #-}

module Main where

import           Control.Monad
import           Control.Monad.Cont
import           Control.Monad.Fix
import           Control.Monad.ST
import           Control.Monad.State
import           Data.Bits
import qualified Data.ByteString.Char8             as BSC8
import           Data.Char
import           Data.Coerce
import           Data.IORef
import qualified Data.Vector.Fusion.Stream.Monadic as VFSM
import           Data.Word

import qualified Data.Vector.Generic               as VG
import qualified Data.Vector.Generic.Mutable       as VGM
import qualified Data.Vector.Unboxed               as VU
import           Unsafe.Coerce


main :: IO ()
main = do
  n <- readLn :: IO Int
  a <- introSort <$> parseN1 n
  check <- newIORef True
  rep (n - 1) $ \i -> when (a VU.! i == a VU.! (i + 1) - 1) $ writeIORef check False
  b <- readIORef check
  if b
    then putStrLn "1"
    else putStrLn "2"

type CParser a = StateT BSC8.ByteString Maybe a
runCParser :: CParser a -> BSC8.ByteString -> Maybe (a, BSC8.ByteString)
runCParser = runStateT
{-# INLINE runCParser #-}
int :: CParser Int
int = coerce $ BSC8.readInt . BSC8.dropWhile isSpace
{-# INLINE int #-}
parseN1 :: Int -> IO (VU.Vector Int)
parseN1 n = VU.unfoldrN n (runCParser int) <$> BSC8.getContents
{-# INLINE parseN1 #-}

introSort :: (Ord a, VG.Vector v a) => v a -> v a
introSort = introSortBy compare

introSortBy :: VG.Vector v a => (a -> a -> Ordering) -> v a -> v a
introSortBy cmp = VG.modify $ inplaceIntroSortBy cmp

inplaceIntroSortBy :: VGM.MVector mv a => (a -> a -> Ordering) -> mv s a -> ST s ()
inplaceIntroSortBy cmp vec = do
  let depthLimit = 2 * floorLog2 (VGM.length vec)
      threshold  = 16
  fix `flip` depthLimit `flip` vec $ \loop !depth mv ->
    when (VGM.length mv > threshold) $
      if depth > 0
        then do
          pivot <- getMedian3Pivot cmp mv
          cut   <- pivotPartition  cmp mv pivot
          loop (depth - 1) (VGM.unsafeDrop cut mv)
          loop (depth - 1) (VGM.unsafeTake cut mv)
        else inplaceHeapSortBy cmp mv
  inplaceInsertionSortBy cmp vec
  where
    floorLog2 :: Int -> Int
    floorLog2 x = fromIntegral $ y `unsafeShiftR` 52 - 1023
      where
        y :: Word64
        y = unsafeCoerce (fromIntegral x :: Double)

pivotPartition :: (VGM.MVector mv a) => (a -> a -> Ordering) -> mv s a -> a -> ST s Int
pivotPartition cmp vec pivot = fix `flip` 0 `flip` VGM.length vec $ \loop !l !r -> do
  !l' <- flip fix l $ \loopL !i -> do
    x   <- VGM.unsafeRead vec i
    case cmp x pivot of
      LT -> loopL (i + 1)
      _  -> return i
  !r' <- flip fix (r - 1) $ \loopR !i -> do
    x <- VGM.unsafeRead vec i
    case cmp pivot x of
      LT -> loopR (i - 1)
      _  -> return i
  if l' < r'
    then do
      VGM.unsafeSwap vec l' r'
      loop (l' + 1) r'
    else return l'
{-# INLINE pivotPartition #-}

getMedian3Pivot :: VGM.MVector mv a => (a -> a -> Ordering) -> mv s a -> ST s a
getMedian3Pivot cmp vec = median cmp <$> VGM.unsafeRead vec 0 <*> VGM.unsafeRead vec (VGM.length vec `quot` 2) <*> VGM.unsafeRead vec (VGM.length vec - 1)
{-# INLINE getMedian3Pivot #-}

median :: (a -> a -> Ordering) -> a -> a -> a -> a
median cmp x y z = case cmp x y of
  LT -> case cmp y z of
    LT -> y
    _  -> case cmp x z of
      LT -> z
      _  -> x
  _  -> case cmp x z of
    LT -> x
    _  -> case cmp y z of
      LT -> z
      _  -> y
{-# INLINE median #-}

inplaceInsertionSortBy :: VGM.MVector mv a => (a -> a -> Ordering) -> mv s a -> ST s ()
inplaceInsertionSortBy cmp vec =
  for 1 (VGM.length vec - 1) 1 $ \i -> do
    x  <- VGM.unsafeRead vec i
    hd <- VGM.unsafeRead vec 0
    case cmp hd x of
      LT -> flip fix i $ \loop !j -> do
        y <- VGM.unsafeRead vec (j - 1)
        case cmp x y of
          LT -> do
            VGM.unsafeWrite vec j y
            loop (j - 1)
          _  -> VGM.unsafeWrite vec j x
      _  -> flip fix i $ \loop !j ->
        if j > 0
          then do
            VGM.unsafeRead vec (j - 1) >>= VGM.unsafeWrite vec j
            loop (j - 1)
          else VGM.unsafeWrite vec 0 x
{-# INLINE inplaceInsertionSortBy #-}

siftDown :: VGM.MVector mv a => (a -> a -> Ordering) -> Int -> mv s a -> ST s ()
siftDown cmp offset vec = do
  let !len = VGM.length vec
  flip fix offset $ \loop !parent -> do
    let !l = 2 * parent + 1
        !r = l + 1
    x <- VGM.unsafeRead vec parent
    when (l < len) $ do
      childL <- VGM.unsafeRead vec l
      if r < len
        then do
          childR <- VGM.unsafeRead vec r
          case cmp childL childR of
            LT -> when (cmp x childR == LT) $ do
              VGM.unsafeSwap vec parent r
              loop r
            _  -> when (cmp x childL == LT) $ do
              VGM.unsafeSwap vec parent l
              loop l
        else when (cmp x childL == LT) $ do
          VGM.unsafeSwap vec parent l
          loop l
{-# INLINE siftDown #-}

heapify :: VGM.MVector mv a => (a -> a -> Ordering) -> mv s a -> ST s ()
heapify cmp vec = rev (VGM.length vec `quot` 2) $ \i -> siftDown cmp i vec
{-# INLINE heapify #-}

inplaceHeapSortBy :: VGM.MVector mv a => (a -> a -> Ordering) -> mv s a -> ST s ()
inplaceHeapSortBy cmp vec = do
  heapify cmp vec
  flip fix (VGM.length vec - 1) $ \loop !i ->
    when (i > 0) $ do
      VGM.unsafeSwap vec 0 i
      siftDown cmp 0 $ VGM.unsafeTake i vec
      loop (i - 1)
{-# INLINE inplaceHeapSortBy #-}


-- | l -> x -> r, +d
stream :: Monad m => Int -> Int -> Int -> VFSM.Stream m Int
stream !l !r !d = VFSM.Stream step l
  where
    step x
      | x <= r    = return $ VFSM.Yield x (x + d)
      | otherwise = return VFSM.Done
    {-# INLINE [0] step #-}
{-# INLINE [1] stream #-}

-- | 0 <= x < n, interval = 1
rep :: Monad m => Int -> (Int -> m ()) -> m ()
rep n = flip VFSM.mapM_ (stream 0 (n - 1) 1)
{-# INLINE rep #-}

-- | 0 <= x <= n, interval = 1
rep' :: Monad m => Int -> (Int -> m ()) -> m ()
rep' n = flip VFSM.mapM_ (stream 0 n 1)
{-# INLINE rep' #-}

-- | 1 <= x < n, interval = 1
rep1 :: Monad m => Int -> (Int -> m ()) -> m ()
rep1 n = flip VFSM.mapM_ (stream 1 (n - 1) 1)
{-# INLINE rep1 #-}

-- | 1 <= x <= n, interval = 1
rep1' :: Monad m => Int -> (Int -> m ()) -> m ()
rep1' n = flip VFSM.mapM_ (stream 1 n 1)
{-# INLINE rep1' #-}

-- | l <= x <= r, interval = d
for :: Monad m => Int -> Int -> Int -> (Int -> m ()) -> m ()
for l r d = flip VFSM.mapM_ (stream l r d)
{-# INLINE for #-}

-- | r -> x -> l, -d
streamR :: Monad m => Int -> Int -> Int -> VFSM.Stream m Int
streamR !r !l !d = VFSM.Stream step r
  where
    step x
      | x >= l    = return $ VFSM.Yield x (x - d)
      | otherwise = return VFSM.Done
    {-# INLINE [0] step #-}
{-# INLINE [1] streamR #-}

-- | n > x >= 0, interval = -1
rev :: Monad m => Int -> (Int -> m ()) -> m ()
rev n = flip VFSM.mapM_ (streamR (n - 1) 0 1)
{-# INLINE rev #-}

-- | n >= x >= 0, interval = -1
rev' :: Monad m => Int -> (Int -> m ()) -> m ()
rev' n = flip VFSM.mapM_ (streamR n 0 1)
{-# INLINE rev' #-}

-- | n > x >= 1, interval = -1
rev1 :: Monad m => Int -> (Int -> m ()) -> m ()
rev1 n = flip VFSM.mapM_ (streamR (n - 1) 1 1)
{-# INLINE rev1 #-}

-- | n >= x >= 1, interval = -1
rev1' :: Monad m => Int -> (Int -> m ()) -> m ()
rev1' n = flip VFSM.mapM_ (streamR n 1 1)
{-# INLINE rev1' #-}

-- | r >= x >= l, interval = -d
forR :: Monad m => Int -> Int -> Int -> (Int -> m ()) -> m ()
forR r l d = flip VFSM.mapM_ (streamR r l d)
{-# INLINE forR #-}

-- | for (int i = l; f(i, p) <= r ; g(i, d))
streamG :: Monad m => Int -> Int -> (Int -> Int -> Int) -> Int -> (Int -> Int -> Int) -> Int -> VFSM.Stream m Int
streamG l r f p g d = VFSM.Stream step l
  where
    step x
      | f x p <= r = return $ VFSM.Yield x (g x d)
      | otherwise  = return VFSM.Done
    {-# INLINE [0] step #-}
{-# INLINE [1] streamG #-}

forG :: Monad m => Int -> Int -> (Int -> Int -> Int) -> Int -> (Int -> Int -> Int) -> Int -> (Int -> m ()) -> m ()
forG l r f p g d = flip VFSM.mapM_ (streamG l r f p g d)
{-# INLINE forG #-}

withBreakIO :: ((r -> ContT r IO b) -> ContT r IO r) -> IO r
withBreakIO = flip runContT pure . callCC
{-# INLINE withBreakIO #-}

withBreakST :: ((r -> ContT r (ST s) b) -> ContT r (ST s) r) -> (ST s) r
withBreakST = flip runContT pure . callCC
{-# INLINE withBreakST #-}
0