結果

問題 No.1285 ゴミ捨て
ユーザー こまる
提出日時 2020-11-16 17:37:04
言語 Haskell
(9.10.1)
結果
AC  
実行時間 39 ms / 2,000 ms
コード長 8,328 bytes
コンパイル時間 4,901 ms
コンパイル使用メモリ 258,688 KB
実行使用メモリ 12,160 KB
最終ジャッジ日時 2024-11-28 21:55:00
合計ジャッジ時間 6,333 ms
ジャッジサーバーID
(参考情報)
judge4 / judge3
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 2
other AC * 22
権限があれば一括ダウンロードができます
コンパイルメッセージ
Loaded package environment from /home/judge/.ghc/x86_64-linux-9.8.2/environments/default
[1 of 2] Compiling Main             ( Main.hs, Main.o )
[2 of 2] Linking a.out

ソースコード

diff #

{-# LANGUAGE BangPatterns      #-}
{-# LANGUAGE FlexibleInstances #-}

module Main where

import           Control.Monad
import           Control.Monad.Cont
import           Control.Monad.Fix
import           Control.Monad.ST
import           Control.Monad.State
import           Data.Bits
import qualified Data.ByteString.Char8             as BSC8
import           Data.Char
import           Data.Coerce
import           Data.IORef
import qualified Data.Vector.Fusion.Stream.Monadic as VFSM
import           Data.Word

import qualified Data.Vector.Generic               as VG
import qualified Data.Vector.Generic.Mutable       as VGM
import qualified Data.Vector.Unboxed               as VU
import           Unsafe.Coerce


main :: IO ()
main = do
  n <- readLn :: IO Int
  a <- introSort <$> parseN1 n
  check <- newIORef True
  rep (n - 1) $ \i -> when (a VU.! i == a VU.! (i + 1) - 1) $ writeIORef check False
  b <- readIORef check
  if b
    then putStrLn "1"
    else putStrLn "2"

type CParser a = StateT BSC8.ByteString Maybe a
runCParser :: CParser a -> BSC8.ByteString -> Maybe (a, BSC8.ByteString)
runCParser = runStateT
{-# INLINE runCParser #-}
int :: CParser Int
int = coerce $ BSC8.readInt . BSC8.dropWhile isSpace
{-# INLINE int #-}
parseN1 :: Int -> IO (VU.Vector Int)
parseN1 n = VU.unfoldrN n (runCParser int) <$> BSC8.getContents
{-# INLINE parseN1 #-}

introSort :: (Ord a, VG.Vector v a) => v a -> v a
introSort = introSortBy compare

introSortBy :: VG.Vector v a => (a -> a -> Ordering) -> v a -> v a
introSortBy cmp = VG.modify $ inplaceIntroSortBy cmp

inplaceIntroSortBy :: VGM.MVector mv a => (a -> a -> Ordering) -> mv s a -> ST s ()
inplaceIntroSortBy cmp vec = do
  let depthLimit = 2 * floorLog2 (VGM.length vec)
      threshold  = 16
  fix `flip` depthLimit `flip` vec $ \loop !depth mv ->
    when (VGM.length mv > threshold) $
      if depth > 0
        then do
          pivot <- getMedian3Pivot cmp mv
          cut   <- pivotPartition  cmp mv pivot
          loop (depth - 1) (VGM.unsafeDrop cut mv)
          loop (depth - 1) (VGM.unsafeTake cut mv)
        else inplaceHeapSortBy cmp mv
  inplaceInsertionSortBy cmp vec
  where
    floorLog2 :: Int -> Int
    floorLog2 x = fromIntegral $ y `unsafeShiftR` 52 - 1023
      where
        y :: Word64
        y = unsafeCoerce (fromIntegral x :: Double)

pivotPartition :: (VGM.MVector mv a) => (a -> a -> Ordering) -> mv s a -> a -> ST s Int
pivotPartition cmp vec pivot = fix `flip` 0 `flip` VGM.length vec $ \loop !l !r -> do
  !l' <- flip fix l $ \loopL !i -> do
    x   <- VGM.unsafeRead vec i
    case cmp x pivot of
      LT -> loopL (i + 1)
      _  -> return i
  !r' <- flip fix (r - 1) $ \loopR !i -> do
    x <- VGM.unsafeRead vec i
    case cmp pivot x of
      LT -> loopR (i - 1)
      _  -> return i
  if l' < r'
    then do
      VGM.unsafeSwap vec l' r'
      loop (l' + 1) r'
    else return l'
{-# INLINE pivotPartition #-}

getMedian3Pivot :: VGM.MVector mv a => (a -> a -> Ordering) -> mv s a -> ST s a
getMedian3Pivot cmp vec = median cmp <$> VGM.unsafeRead vec 0 <*> VGM.unsafeRead vec (VGM.length vec `quot` 2) <*> VGM.unsafeRead vec (VGM.length vec - 1)
{-# INLINE getMedian3Pivot #-}

median :: (a -> a -> Ordering) -> a -> a -> a -> a
median cmp x y z = case cmp x y of
  LT -> case cmp y z of
    LT -> y
    _  -> case cmp x z of
      LT -> z
      _  -> x
  _  -> case cmp x z of
    LT -> x
    _  -> case cmp y z of
      LT -> z
      _  -> y
{-# INLINE median #-}

inplaceInsertionSortBy :: VGM.MVector mv a => (a -> a -> Ordering) -> mv s a -> ST s ()
inplaceInsertionSortBy cmp vec =
  for 1 (VGM.length vec - 1) 1 $ \i -> do
    x  <- VGM.unsafeRead vec i
    hd <- VGM.unsafeRead vec 0
    case cmp hd x of
      LT -> flip fix i $ \loop !j -> do
        y <- VGM.unsafeRead vec (j - 1)
        case cmp x y of
          LT -> do
            VGM.unsafeWrite vec j y
            loop (j - 1)
          _  -> VGM.unsafeWrite vec j x
      _  -> flip fix i $ \loop !j ->
        if j > 0
          then do
            VGM.unsafeRead vec (j - 1) >>= VGM.unsafeWrite vec j
            loop (j - 1)
          else VGM.unsafeWrite vec 0 x
{-# INLINE inplaceInsertionSortBy #-}

siftDown :: VGM.MVector mv a => (a -> a -> Ordering) -> Int -> mv s a -> ST s ()
siftDown cmp offset vec = do
  let !len = VGM.length vec
  flip fix offset $ \loop !parent -> do
    let !l = 2 * parent + 1
        !r = l + 1
    x <- VGM.unsafeRead vec parent
    when (l < len) $ do
      childL <- VGM.unsafeRead vec l
      if r < len
        then do
          childR <- VGM.unsafeRead vec r
          case cmp childL childR of
            LT -> when (cmp x childR == LT) $ do
              VGM.unsafeSwap vec parent r
              loop r
            _  -> when (cmp x childL == LT) $ do
              VGM.unsafeSwap vec parent l
              loop l
        else when (cmp x childL == LT) $ do
          VGM.unsafeSwap vec parent l
          loop l
{-# INLINE siftDown #-}

heapify :: VGM.MVector mv a => (a -> a -> Ordering) -> mv s a -> ST s ()
heapify cmp vec = rev (VGM.length vec `quot` 2) $ \i -> siftDown cmp i vec
{-# INLINE heapify #-}

inplaceHeapSortBy :: VGM.MVector mv a => (a -> a -> Ordering) -> mv s a -> ST s ()
inplaceHeapSortBy cmp vec = do
  heapify cmp vec
  flip fix (VGM.length vec - 1) $ \loop !i ->
    when (i > 0) $ do
      VGM.unsafeSwap vec 0 i
      siftDown cmp 0 $ VGM.unsafeTake i vec
      loop (i - 1)
{-# INLINE inplaceHeapSortBy #-}


-- | l -> x -> r, +d
stream :: Monad m => Int -> Int -> Int -> VFSM.Stream m Int
stream !l !r !d = VFSM.Stream step l
  where
    step x
      | x <= r    = return $ VFSM.Yield x (x + d)
      | otherwise = return VFSM.Done
    {-# INLINE [0] step #-}
{-# INLINE [1] stream #-}

-- | 0 <= x < n, interval = 1
rep :: Monad m => Int -> (Int -> m ()) -> m ()
rep n = flip VFSM.mapM_ (stream 0 (n - 1) 1)
{-# INLINE rep #-}

-- | 0 <= x <= n, interval = 1
rep' :: Monad m => Int -> (Int -> m ()) -> m ()
rep' n = flip VFSM.mapM_ (stream 0 n 1)
{-# INLINE rep' #-}

-- | 1 <= x < n, interval = 1
rep1 :: Monad m => Int -> (Int -> m ()) -> m ()
rep1 n = flip VFSM.mapM_ (stream 1 (n - 1) 1)
{-# INLINE rep1 #-}

-- | 1 <= x <= n, interval = 1
rep1' :: Monad m => Int -> (Int -> m ()) -> m ()
rep1' n = flip VFSM.mapM_ (stream 1 n 1)
{-# INLINE rep1' #-}

-- | l <= x <= r, interval = d
for :: Monad m => Int -> Int -> Int -> (Int -> m ()) -> m ()
for l r d = flip VFSM.mapM_ (stream l r d)
{-# INLINE for #-}

-- | r -> x -> l, -d
streamR :: Monad m => Int -> Int -> Int -> VFSM.Stream m Int
streamR !r !l !d = VFSM.Stream step r
  where
    step x
      | x >= l    = return $ VFSM.Yield x (x - d)
      | otherwise = return VFSM.Done
    {-# INLINE [0] step #-}
{-# INLINE [1] streamR #-}

-- | n > x >= 0, interval = -1
rev :: Monad m => Int -> (Int -> m ()) -> m ()
rev n = flip VFSM.mapM_ (streamR (n - 1) 0 1)
{-# INLINE rev #-}

-- | n >= x >= 0, interval = -1
rev' :: Monad m => Int -> (Int -> m ()) -> m ()
rev' n = flip VFSM.mapM_ (streamR n 0 1)
{-# INLINE rev' #-}

-- | n > x >= 1, interval = -1
rev1 :: Monad m => Int -> (Int -> m ()) -> m ()
rev1 n = flip VFSM.mapM_ (streamR (n - 1) 1 1)
{-# INLINE rev1 #-}

-- | n >= x >= 1, interval = -1
rev1' :: Monad m => Int -> (Int -> m ()) -> m ()
rev1' n = flip VFSM.mapM_ (streamR n 1 1)
{-# INLINE rev1' #-}

-- | r >= x >= l, interval = -d
forR :: Monad m => Int -> Int -> Int -> (Int -> m ()) -> m ()
forR r l d = flip VFSM.mapM_ (streamR r l d)
{-# INLINE forR #-}

-- | for (int i = l; f(i, p) <= r ; g(i, d))
streamG :: Monad m => Int -> Int -> (Int -> Int -> Int) -> Int -> (Int -> Int -> Int) -> Int -> VFSM.Stream m Int
streamG l r f p g d = VFSM.Stream step l
  where
    step x
      | f x p <= r = return $ VFSM.Yield x (g x d)
      | otherwise  = return VFSM.Done
    {-# INLINE [0] step #-}
{-# INLINE [1] streamG #-}

forG :: Monad m => Int -> Int -> (Int -> Int -> Int) -> Int -> (Int -> Int -> Int) -> Int -> (Int -> m ()) -> m ()
forG l r f p g d = flip VFSM.mapM_ (streamG l r f p g d)
{-# INLINE forG #-}

withBreakIO :: ((r -> ContT r IO b) -> ContT r IO r) -> IO r
withBreakIO = flip runContT pure . callCC
{-# INLINE withBreakIO #-}

withBreakST :: ((r -> ContT r (ST s) b) -> ContT r (ST s) r) -> (ST s) r
withBreakST = flip runContT pure . callCC
{-# INLINE withBreakST #-}
0