結果

問題 No.8030 ミラー・ラビン素数判定法のテスト
ユーザー こまるこまる
提出日時 2020-11-19 03:33:54
言語 Haskell
(9.8.2)
結果
CE  
(最新)
AC  
(最初)
実行時間 -
コード長 6,188 bytes
コンパイル時間 470 ms
コンパイル使用メモリ 152,320 KB
最終ジャッジ日時 2024-11-15 05:02:02
合計ジャッジ時間 910 ms
ジャッジサーバーID
(参考情報)
judge5 / judge3
このコードへのチャレンジ
(要ログイン)
コンパイルエラー時のメッセージ・ソースコードは、提出者また管理者しか表示できないようにしております。(リジャッジ後のコンパイルエラーは公開されます)
ただし、clay言語の場合は開発者のデバッグのため、公開されます。

コンパイルメッセージ
Loaded package environment from /home/judge/.ghc/x86_64-linux-9.8.2/environments/default
[1 of 2] Compiling Main             ( Main.hs, Main.o )

Main.hs:15:1: error: [GHC-87110]
    Could not load module ‘GHC.Integer.GMP.Internals’.
    It is a member of the hidden package ‘integer-gmp-1.1’.
    Use -v to see a list of the files searched for.
   |
15 | import qualified GHC.Integer.GMP.Internals         as GMP
   | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

ソースコード

diff #

{-# LANGUAGE BangPatterns    #-}
{-# LANGUAGE OverloadedLists #-}

import           Control.Monad
import           Control.Monad.Cont
import           Control.Monad.ST
import           Control.Monad.State
import           Data.Bits
import           Data.Bool
import           Data.STRef.Strict
import           System.IO
import qualified Data.ByteString.Builder           as BSB
import qualified Data.ByteString.Char8             as BSC8
import qualified Data.ByteString.Lazy.Char8        as BSLC8
import qualified GHC.Integer.GMP.Internals         as GMP
import qualified Data.Vector.Fusion.Stream.Monadic as VFSM
import qualified Data.Vector.Generic               as VG
import qualified Data.Vector.Unboxed               as VU

main :: IO ()
main = do
  q <- readLn :: IO Int
  xs <- VU.unfoldrN q (runStateT rInt) <$> BSLC8.getContents
  putBuilder $ v2BLinesWith (\b -> BSB.byteString $ BSC8.pack $ show b ++ bool " 0" " 1" (millerRabin b)) xs

millerRabin :: Int -> Bool
millerRabin k
  | k <= 3 = k == 2 || k == 3
  | k .&. 1 == 0 = False
  | otherwise = _millerRabin k
  where
    _millerRabin :: Int -> Bool
    _millerRabin n
      | n < 2047            = loop [2]
      | n < 1373653         = loop [2,3]
      | n < 9080191         = loop [31,73]
      | n < 25326001        = loop [2,3,5]
      | n < 4759123141      = loop [2,7,61]
      | n < 1122004669633   = loop [2,13,23,1662803]
      | n < 2152302898747   = loop [2,3,5,7,11]
      | n < 3474749660383   = loop [2,3,5,7,11,13]
      | n < 341550071728321 = loop [2,3,5,7,11,13,17]
      | otherwise           = loop [2,325,9375,28178,450775,9780504,1795265022]
      where
        !m = n - 1
        !s = ctz m
        !d = m .>>. s
        loop :: VU.Vector Int -> Bool
        loop vec = runST $ do
          ret <- newSTRef True
          withBreakST $ \break1 -> do
            VU.forM_ vec $ \a -> do
              let
                check1 = powModInt a d n /= 1
                check2 = runST $ do
                  res <- newSTRef True
                  withBreakST $ \break2 -> rep s $ \r -> when (powModInt a ((1 .<<. r) * d) n == m) $ do
                    lift $ writeSTRef res False
                    break2 ()
                  readSTRef res
              when (check1 && check2) $ do
                lift $ writeSTRef ret False
                break1 ()
          readSTRef ret

powModInt :: Int -> Int -> Int -> Int
powModInt a n mo = fI $ GMP.powModInteger (fi a) (fi n) (fi mo)
{-# INLINE powModInt #-}

recipModInt :: Int -> Int -> Int
recipModInt a mo = fI $ GMP.recipModInteger (fi a) (fi mo)
{-# INLINE recipModInt #-}

fi :: Int -> Integer
fi = fromIntegral
{-# INLINE fi #-}

fI :: Integer -> Int
fI = fromInteger
{-# INLINE fI #-}

clz :: FiniteBits fb => fb -> Int
clz = countLeadingZeros
{-# INLINE clz #-}

ctz :: FiniteBits fb => fb -> Int
ctz = countTrailingZeros
{-# INLINE ctz #-}

infixl 8 .<<., .>>.

(.<<.) :: Bits b => b -> Int -> b
(.<<.) = unsafeShiftL
{-# INLINE (.<<.) #-}

(.>>.) :: Bits b => b -> Int -> b
(.>>.) = unsafeShiftR
{-# INLINE (.>>.) #-}

rep :: Monad m => Int -> (Int -> m ()) -> m ()
rep n = flip VFSM.mapM_ (streamG 0 (n - 1) const 0 (+) 1)
{-# INLINE rep #-}

rep' :: Monad m => Int -> (Int -> m ()) -> m ()
rep' n = flip VFSM.mapM_ (streamG 0 n const 0 (+) 1)
{-# INLINE rep' #-}

rep1 :: Monad m => Int -> (Int -> m ()) -> m ()
rep1 n = flip VFSM.mapM_ (streamG 1 (n - 1) const 0 (+) 1)
{-# INLINE rep1 #-}

rep1' :: Monad m => Int -> (Int -> m ()) -> m ()
rep1' n = flip VFSM.mapM_ (streamG 1 n const 0 (+) 1)
{-# INLINE rep1' #-}

rev :: Monad m => Int -> (Int -> m ()) -> m ()
rev n = flip VFSM.mapM_ (streamRG (n - 1) 0 const 0 (-) 1)
{-# INLINE rev #-}

rev' :: Monad m => Int -> (Int -> m ()) -> m ()
rev' n = flip VFSM.mapM_ (streamRG n 0 const 0 (-) 1)
{-# INLINE rev' #-}

rev1 :: Monad m => Int -> (Int -> m ()) -> m ()
rev1 n = flip VFSM.mapM_ (streamRG (n - 1) 1 const 0 (-) 1)
{-# INLINE rev1 #-}

rev1' :: Monad m => Int -> (Int -> m ()) -> m ()
rev1' n = flip VFSM.mapM_ (streamRG n 1 const 0 (-) 1)
{-# INLINE rev1' #-}

range :: Monad m => Int -> Int -> (Int -> m ()) -> m ()
range l r = flip VFSM.mapM_ (streamG l r const 0 (+) 1)
{-# INLINE range #-}

rangeR :: Monad m => Int -> Int -> (Int -> m ()) -> m ()
rangeR r l = flip VFSM.mapM_ (streamRG r l const 0 (-) 1)
{-# INLINE rangeR #-}

forP :: Monad m => Int -> (Int -> m ()) -> m ()
forP p = flip VFSM.mapM_ (streamG 2 (p - 1) (^) 2 (+) 1)
{-# INLINE forP #-}

forG :: Monad m => Int -> Int -> (Int -> Int -> Int) -> Int -> (Int -> Int -> Int) -> Int -> (Int -> m ()) -> m ()
forG l r f p g d = flip VFSM.mapM_ (streamG l r f p g d)
{-# INLINE forG #-}

forRG :: Monad m => Int -> Int -> (Int -> Int -> Int) -> Int -> (Int -> Int -> Int) -> Int -> (Int -> m ()) -> m ()
forRG r l f p g d = flip VFSM.mapM_ (streamRG r l f p g d)
{-# INLINE forRG #-}

streamG :: Monad m => Int -> Int -> (Int -> Int -> Int) -> Int -> (Int -> Int -> Int) -> Int -> VFSM.Stream m Int
streamG !l !r !f !p !g !d = VFSM.Stream step l
  where
    step x
      | f x p <= r = return $ VFSM.Yield x (g x d)
      | otherwise  = return VFSM.Done
    {-# INLINE [0] step #-}
{-# INLINE [1] streamG #-}

streamRG :: Monad m => Int -> Int -> (Int -> Int -> Int) -> Int -> (Int -> Int -> Int) -> Int -> VFSM.Stream m Int
streamRG !r !l !f !p !g !d = VFSM.Stream step r
  where
    step x
      | f x p >= l = return $ VFSM.Yield x (g x d)
      | otherwise  = return VFSM.Done
    {-# INLINE [0] step #-}
{-# INLINE [1] streamRG #-}

withBreakIO :: ((r -> ContT r IO b) -> ContT r IO r) -> IO r
withBreakIO = flip runContT pure . callCC
{-# INLINE withBreakIO #-}

withBreakST :: ((r -> ContT r (ST s) b) -> ContT r (ST s) r) -> (ST s) r
withBreakST = flip runContT pure . callCC
{-# INLINE withBreakST #-}

v2BLinesWith :: VG.Vector v t => (t -> BSB.Builder) -> v t -> BSB.Builder
v2BLinesWith showFct = VG.foldr (\ a -> (showFct a <>) . (BSB.char7 '\n' <>)) mempty
{-# INLINE v2BLinesWith #-}

putBuilder :: BSB.Builder -> IO ()
putBuilder = BSB.hPutBuilder stdout
{-# INLINE putBuilder #-}

rInt :: StateT BSLC8.ByteString Maybe Int
rInt = StateT $ BSLC8.readInt . BSLC8.dropWhile (<'!')
{-# INLINE rInt #-}
0