結果

問題 No.803 Very Limited Xor Subset
ユーザー minatominato
提出日時 2020-11-19 20:58:12
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 3 ms / 2,000 ms
コード長 9,727 bytes
コンパイル時間 3,774 ms
コンパイル使用メモリ 232,676 KB
実行使用メモリ 6,944 KB
最終ジャッジ日時 2024-07-23 11:47:28
合計ジャッジ時間 5,218 ms
ジャッジサーバーID
(参考情報)
judge5 / judge4
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
6,812 KB
testcase_01 AC 2 ms
6,940 KB
testcase_02 AC 2 ms
6,944 KB
testcase_03 AC 2 ms
6,940 KB
testcase_04 AC 2 ms
6,944 KB
testcase_05 AC 2 ms
6,940 KB
testcase_06 AC 2 ms
6,940 KB
testcase_07 AC 2 ms
6,940 KB
testcase_08 AC 2 ms
6,944 KB
testcase_09 AC 2 ms
6,944 KB
testcase_10 AC 1 ms
6,940 KB
testcase_11 AC 2 ms
6,940 KB
testcase_12 AC 2 ms
6,940 KB
testcase_13 AC 2 ms
6,940 KB
testcase_14 AC 3 ms
6,944 KB
testcase_15 AC 2 ms
6,940 KB
testcase_16 AC 3 ms
6,944 KB
testcase_17 AC 2 ms
6,940 KB
testcase_18 AC 2 ms
6,940 KB
testcase_19 AC 2 ms
6,940 KB
testcase_20 AC 2 ms
6,944 KB
testcase_21 AC 2 ms
6,944 KB
testcase_22 AC 2 ms
6,940 KB
testcase_23 AC 3 ms
6,944 KB
testcase_24 AC 3 ms
6,940 KB
testcase_25 AC 3 ms
6,940 KB
testcase_26 AC 3 ms
6,944 KB
testcase_27 AC 2 ms
6,944 KB
testcase_28 AC 2 ms
6,944 KB
testcase_29 AC 2 ms
6,940 KB
testcase_30 AC 2 ms
6,940 KB
testcase_31 AC 3 ms
6,940 KB
testcase_32 AC 3 ms
6,940 KB
testcase_33 AC 3 ms
6,940 KB
testcase_34 AC 2 ms
6,940 KB
testcase_35 AC 3 ms
6,944 KB
testcase_36 AC 2 ms
6,940 KB
testcase_37 AC 2 ms
6,944 KB
testcase_38 AC 2 ms
6,940 KB
testcase_39 AC 2 ms
6,940 KB
testcase_40 AC 2 ms
6,944 KB
testcase_41 AC 2 ms
6,940 KB
testcase_42 AC 2 ms
6,940 KB
testcase_43 AC 3 ms
6,944 KB
testcase_44 AC 2 ms
6,944 KB
testcase_45 AC 2 ms
6,940 KB
testcase_46 AC 2 ms
6,940 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#ifdef ONLINE_JUDGE
#pragma GCC target("avx2,avx")
#pragma GCC optimize("O3")
#pragma GCC optimize("unroll-loops")
#endif
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
using ull = unsigned long long;
using i128 = __int128_t;
using pii = pair<int, int>;
using pll = pair<long long, long long>;
#define rep(i, n) for (int i = 0; i < (n); i++)
#define rrep(i, n) for (int i = int(n) - 1; i >= 0; i--)
#define all(x) (x).begin(), (x).end()
constexpr char ln = '\n';
istream& operator>>(istream& is, __int128_t& x) {
    x = 0;
    string s;
    is >> s;
    int n = int(s.size()), it = 0;
    if (s[0] == '-') it++;
    for (; it < n; it++) x = (x * 10 + s[it] - '0');
    if (s[0] == '-') x = -x;
    return is;
}
ostream& operator<<(ostream& os, __int128_t x) {
    if (x == 0) return os << 0;
    if (x < 0) os << '-', x = -x;
    deque<int> deq;
    while (x) deq.emplace_front(x % 10), x /= 10;
    for (int e : deq) os << e;
    return os;
}
template<class T1, class T2>
ostream& operator<<(ostream& os, const pair<T1, T2>& p) {
    return os << "(" << p.first << ", " << p.second << ")";
}
template<class T> 
ostream& operator<<(ostream& os, const vector<T>& v) {
    os << "{";
    for (int i = 0; i < int(v.size()); i++) {
        if (i) os << ", ";
        os << v[i];
    }
    return os << "}";
}
template<class Container> inline int SZ(Container& v) { return int(v.size()); }
template<class T> inline void UNIQUE(vector<T>& v) { v.erase(unique(v.begin(), v.end()), v.end()); }
template<class T1, class T2> inline bool chmax(T1& a, T2 b) { if (a < b) {a = b; return true ;} return false ;}
template<class T1, class T2> inline bool chmin(T1& a, T2 b) { if (a > b) {a = b; return true ;} return false ;}
inline int topbit(int x) { return x == 0 ? -1 : 31 - __builtin_clz(x); }
inline int topbit(long long x) { return x == 0 ? -1 : 63 - __builtin_clzll(x); }
inline int botbit(int x) { return x == 0 ? 32 : __builtin_ctz(x); }
inline int botbit(long long x) { return x == 0 ? 64 : __builtin_ctzll(x); }
inline int popcount(int x) { return __builtin_popcount(x); }
inline int popcount(long long x) { return __builtin_popcountll(x); }
inline int kthbit(long long x, int k) { return (x>>k) & 1; }
inline constexpr long long TEN(int x) { return x == 0 ? 1 : TEN(x-1) * 10; }
inline void print() { cout << "\n"; }
template<class T>
inline void print(const vector<T>& v) {
    for (int i = 0; i < int(v.size()); i++) {
        if (i) cout << " ";
        cout << v[i];
    }
    print();
}
template<class T, class... Args>
inline void print(const T& x, const Args& ... args) {
    cout << x << " ";
    print(args...);
}
#ifdef MINATO_LOCAL
inline void debug_out() { cerr << endl; }
template <class T, class... Args>
inline void debug_out(const T& x, const Args& ... args) {
    cerr << " " << x;
    debug_out(args...);
}
#define debug(...) cerr << __LINE__ << " : [" << #__VA_ARGS__ << "] =", debug_out(__VA_ARGS__)
#define dump(x) cerr << __LINE__ << " : " << #x << " = " << (x) << endl
#else
#define debug(...) (void(0))
#define dump(x) (void(0))
#endif
struct fast_ios { fast_ios() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(20); }; } fast_ios_;
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

template<int m> 
struct ModInt {
  public:
    static constexpr int mod() { return m; }
    static ModInt raw(int v) {
        ModInt x;
        x._v = v;
        return x;
    }

    ModInt() : _v(0) {}
    ModInt(long long v) {
        long long x = (long long)(v % (long long)(umod()));
        if (x < 0) x += umod();
        _v = (unsigned int)(x);
    }

    unsigned int val() const { return _v; }

    ModInt& operator++() {
        _v++;
        if (_v == umod()) _v = 0;
        return *this;
    }
    ModInt& operator--() {
        if (_v == 0) _v = umod();
        _v--;
        return *this;
    }
    ModInt operator++(int) {
        ModInt result = *this;
        ++*this;
        return result;
    }
    ModInt operator--(int) {
        ModInt result = *this;
        --*this;
        return result;
    }

    ModInt& operator+=(const ModInt& rhs) {
        _v += rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    ModInt& operator-=(const ModInt& rhs) {
        _v -= rhs._v;
        if (_v >= umod()) _v += umod();
        return *this;
    }
    ModInt& operator*=(const ModInt& rhs) {
        unsigned long long z = _v;
        z *= rhs._v;
        _v = (unsigned int)(z % umod());
        return *this;
    }
    ModInt& operator^=(long long n) {
        ModInt x = *this;
        *this = 1;
        if (n < 0) x = x.inv(), n = -n;
        while (n) {
            if (n & 1) *this *= x;
            x *= x;
            n >>= 1;
        }
        return *this;
    }
    ModInt& operator/=(const ModInt& rhs) { return *this = *this * rhs.inv(); }

    ModInt operator+() const { return *this; }
    ModInt operator-() const { return ModInt() - *this; }

    ModInt pow(long long n) const {
        ModInt r = *this;
        r ^= n;
        return r;
    }
    ModInt inv() const {
        int a = _v, b = umod(), y = 1, z = 0, t;
        for (; ; ) {
            t = a / b; a -= t * b;
            if (a == 0) {
                assert(b == 1 || b == -1);
                return ModInt(b * z);
            }
            y -= t * z;
            t = b / a; b -= t * a;
            if (b == 0) {
                assert(a == 1 || a == -1);
                return ModInt(a * y);
            }
            z -= t * y;
        }
    }

    friend ModInt operator+(const ModInt& lhs, const ModInt& rhs) { return ModInt(lhs) += rhs; }
    friend ModInt operator-(const ModInt& lhs, const ModInt& rhs) { return ModInt(lhs) -= rhs; }
    friend ModInt operator*(const ModInt& lhs, const ModInt& rhs) { return ModInt(lhs) *= rhs; }
    friend ModInt operator/(const ModInt& lhs, const ModInt& rhs) { return ModInt(lhs) /= rhs; }
    friend ModInt operator^(const ModInt& lhs, long long rhs) { return ModInt(lhs) ^= rhs; }
    friend bool operator==(const ModInt& lhs, const ModInt& rhs) { return lhs._v == rhs._v; }
    friend bool operator!=(const ModInt& lhs, const ModInt& rhs) { return lhs._v != rhs._v; }
    friend ModInt operator+(long long lhs, const ModInt& rhs) { return (ModInt(lhs) += rhs); }
    friend ModInt operator-(long long lhs, const ModInt& rhs) { return (ModInt(lhs) -= rhs); }
    friend ModInt operator*(long long lhs, const ModInt& rhs) { return (ModInt(lhs) *= rhs); }
    friend ostream &operator<<(ostream& os, const ModInt& rhs) { return os << rhs._v; }

  private:
    unsigned int _v;
    static constexpr unsigned int umod() { return m; }
};
 
constexpr int MOD = 1000000007;
//constexpr int MOD = 998244353;

using mint = ModInt<MOD>;

template<int MAX_COL>
struct BitMatrix {
    int N,M;
    vector<bitset<MAX_COL>> A;
    BitMatrix() {}
    BitMatrix(int N) : N(N), M(MAX_COL), A(N) {}
    BitMatrix(int N, int M) : N(N), M(M), A(N) {}

    const bitset<MAX_COL> &operator[](int k) const {return A[k];}
    bitset<MAX_COL> &operator[](int k) {return A[k];}

    void clear() {
        for (int i = 0; i < N; i++) A[i].clear();
    }

    // xor subset 最大化は掃き出し法で解ける
    // ex 集合{65,66} の部分和(和は xor ) は集合{65,65^66} の部分和と一致する
    // 各列について立っている bit を一つにしてどう集合から部分和を選ぶと和が最大になるか明らかにする
    int GaussJordan(int isextened = 0) {
        int rank = 0;
        //左の列から掃き出していく
        for (int col = 0; col < M - isextened; col++) {
            int pivot = -1;
            for (int row = rank; row < N; row++) {
                if (A[row][col]) {
                    pivot = row;
                    break;
                }
            }
            if (pivot == -1) continue;
            // 最も左の bit が対角に並んでいく
            swap(A[pivot], A[rank]);
            for (int row = 0; row < N; row++) {
                // pivot のある列の値がすべて 0 になるように掃き出す
                if (row != rank && A[row][col]) A[row] ^= A[rank];
            }
            rank++;
        }
        return rank;
    }
};

constexpr int COL = 301;

using BM = BitMatrix<COL>;

//連立一次方程式 Ax = b の解を求める
//解なしなら -1 ,そうでないなら rank を返す
//解の個数は M - rank
// O(N * M^2 / 64)
//N : タテ,式の個数, M : ヨコ,変数の個数
pair<int, vector<int>> linear_equation(const BM& A, const vector<int>& b) {
    int N = A.N;
    int M = A.M;
    assert(N == int(b.size()));
    BM mat(N,M+1);
    for (int i = 0; i < N; i++) {
        for (int j = 0; j < M; j++) {
            mat[i][j] = A[i][j];
        }
        mat[i][M] = b[i];
    }
    
    int rank = mat.GaussJordan(1);
    for (int i = rank; i < N; i++) {
        if (mat[i][M]) return {-1, vector<int>{}};
    }
    vector<int> ret(M);
    for (int i = 0; i < rank; i++) ret[i] = mat[i][M];
    return {rank,ret};
};

int main() {
    int N,M,X; cin >> N >> M >> X;
    vector<int> A(N);
    rep(i,N) cin >> A[i];

    BM mat(30+M,N);
    vector<int> b(30+M);
    rep(k,30) {
        rep(i,N) if (kthbit(A[i],k)) mat[k][i] = 1;
        b[k] = kthbit(X,k); 
    }

    rep(i,M) {
        int t,l,r; cin >> t >> l >> r;
        l--;
        for (int j = l; j < r; j++) {
            mat[30+i][j] = 1;
        }
        b[30+i] = t;
    }
    auto[rank,ret] = linear_equation(mat,b);

    if (rank==-1) {
        cout << 0 << ln;
        return 0;
    }
    cout << mint(2).pow(N-rank) << ln;
}
0