結果

問題 No.1095 Smallest Kadomatsu Subsequence
ユーザー Coki628Coki628
提出日時 2020-11-20 22:13:14
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 898 ms / 2,000 ms
コード長 8,665 bytes
コンパイル時間 2,270 ms
コンパイル使用メモリ 206,168 KB
最終ジャッジ日時 2025-01-16 02:26:24
ジャッジサーバーID
(参考情報)
judge3 / judge2
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 30
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

/**
*/
// #pragma GCC target("avx2")
// #pragma GCC optimize("O3")
// #pragma GCC optimize("unroll-loops")
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
using ld = long double;
using pll = pair<ll, ll>;
using pii = pair<int, int>;
using vvl = vector<vector<ll>>;
using vvi = vector<vector<int>>;
using vvpll = vector<vector<pll>>;
#define rep(i, a, b) for (ll i=(a); i<(b); i++)
#define rrep(i, a, b) for (ll i=(a); i>(b); i--)
#define pb push_back
#define tostr to_string
#define list2d(name, N, M, type, init) vector<vector<type>> name(N, vector<type>(M, init))
constexpr ll INF = LONG_LONG_MAX;
constexpr ll MOD = 1000000007;
void print(ld out) { cout << fixed << setprecision(15) << out << '\n'; }
void print(double out) { cout << fixed << setprecision(15) << out << '\n'; }
template<typename T> void print(T out) { cout << out << '\n'; }
template<typename T1, typename T2> void print(pair<T1, T2> out) { cout << out.first << ' ' << out.second << '\n'; }
template<typename T> void print(vector<T> A) { rep(i, 0, A.size()) { cout << A[i]; cout << (i == A.size()-1 ? '\n' : ' '); } }
template<typename T> void print(set<T> S) { vector<T> A(S.begin(), S.end()); print(A); }
template<typename T> inline bool chmax(T &x, T y) { return (y > x) ? x = y, true : false; }
template<typename T> inline bool chmin(T &x, T y) { return (y < x) ? x = y, true : false; }
ll sum(vector<ll> A) { ll res = 0; for (ll a: A) res += a; return res; }
ll max(vector<ll> A) { ll res = -INF; for (ll a: A) chmax(res, a); return res; }
ll min(vector<ll> A) { ll res = INF; for (ll a: A) chmin(res, a); return res; }
ll toint(string s) { ll res = 0; for (char c : s) { res *= 10; res += (c - '0'); } return res; }
int toint(char num) { return num - '0'; }
char tochar(int num) { return '0' + num; }
inline ll pow(int x, ll n) { ll res = 1; rep(_, 0, n) res *= x; return res; }
inline ll pow(ll x, ll n, int mod) { ll res = 1; while (n > 0) { if (n & 1) { res = (res * x) % mod; } x = (x * x) % mod; n >>= 1; } return res; }
inline ll floor(ll a, ll b) { if (a < 0) { return (a-b+1) / b; } else { return a / b; } }
inline ll ceil(ll a, ll b) { if (a >= 0) { return (a+b-1) / b; } else { return a / b; } }
pll divmod(ll a, ll b) { ll d = a / b; ll m = a % b; return {d, m}; }
int popcount(ll S) { return __builtin_popcountll(S); }
ll gcd(ll a, ll b) { return __gcd(a, b); }
// (Wavelet Matrix使)
struct SuccinctIndexableDictionary {
size_t length;
size_t blocks;
vector< unsigned > bit, sum;
SuccinctIndexableDictionary() = default;
SuccinctIndexableDictionary(size_t length) : length(length), blocks((length + 31) >> 5) {
bit.assign(blocks, 0U);
sum.assign(blocks, 0U);
}
void set(int k) {
bit[k >> 5] |= 1U << (k & 31);
}
void build() {
sum[0] = 0U;
for(int i = 1; i < blocks; i++) {
sum[i] = sum[i - 1] + __builtin_popcount(bit[i - 1]);
}
}
bool operator[](int k) {
return (bool((bit[k >> 5] >> (k & 31)) & 1));
}
int rank(int k) {
return (sum[k >> 5] + __builtin_popcount(bit[k >> 5] & ((1U << (k & 31)) - 1)));
}
int rank(bool val, int k) {
return (val ? rank(k) : k - rank(k));
}
};
// Wavelet Matrix
template< typename T, int MAXLOG >
struct WaveletMatrix {
size_t length;
SuccinctIndexableDictionary matrix[MAXLOG];
int mid[MAXLOG];
WaveletMatrix() = default;
WaveletMatrix(vector< T > v) : length(v.size()) {
vector< T > l(length), r(length);
for(int level = MAXLOG - 1; level >= 0; level--) {
matrix[level] = SuccinctIndexableDictionary(length + 1);
int left = 0, right = 0;
for(int i = 0; i < length; i++) {
if(((v[i] >> level) & 1)) {
matrix[level].set(i);
r[right++] = v[i];
} else {
l[left++] = v[i];
}
}
mid[level] = left;
matrix[level].build();
v.swap(l);
for(int i = 0; i < right; i++) {
v[left + i] = r[i];
}
}
}
pair< int, int > succ(bool f, int l, int r, int level) {
return {matrix[level].rank(f, l) + mid[level] * f, matrix[level].rank(f, r) + mid[level] * f};
}
// v[k]
T access(int k) {
T ret = 0;
for(int level = MAXLOG - 1; level >= 0; level--) {
bool f = matrix[level][k];
if(f) ret |= T(1) << level;
k = matrix[level].rank(f, k) + mid[level] * f;
}
return ret;
}
T operator[](const int &k) {
return access(k);
}
// count i s.t. (0 <= i < r) && v[i] == x
int rank(const T &x, int r) {
int l = 0;
for(int level = MAXLOG - 1; level >= 0; level--) {
tie(l, r) = succ((x >> level) & 1, l, r, level);
}
return r - l;
}
// k-th(0-indexed) smallest number in v[l,r)
T kth_smallest(int l, int r, int k) {
assert(0 <= k && k < r - l);
T ret = 0;
for(int level = MAXLOG - 1; level >= 0; level--) {
int cnt = matrix[level].rank(false, r) - matrix[level].rank(false, l);
bool f = cnt <= k;
if(f) {
ret |= T(1) << level;
k -= cnt;
}
tie(l, r) = succ(f, l, r, level);
}
return ret;
}
// k-th(0-indexed) largest number in v[l,r)
T kth_largest(int l, int r, int k) {
return kth_smallest(l, r, r - l - k - 1);
}
// count i s.t. (l <= i < r) && (v[i] < upper)
int range_freq(int l, int r, T upper) {
int ret = 0;
for(int level = MAXLOG - 1; level >= 0; level--) {
bool f = ((upper >> level) & 1);
if(f) ret += matrix[level].rank(false, r) - matrix[level].rank(false, l);
tie(l, r) = succ(f, l, r, level);
}
return ret;
}
// count i s.t. (l <= i < r) && (lower <= v[i] < upper)
int range_freq(int l, int r, T lower, T upper) {
return range_freq(l, r, upper) - range_freq(l, r, lower);
}
// max v[i] s.t. (l <= i < r) && (v[i] < upper)
T prev_value(int l, int r, T upper) {
int cnt = range_freq(l, r, upper);
return cnt == 0 ? T(-1) : kth_smallest(l, r, cnt - 1);
}
// min v[i] s.t. (l <= i < r) && (lower <= v[i])
T next_value(int l, int r, T lower) {
int cnt = range_freq(l, r, lower);
return cnt == r - l ? T(-1) : kth_smallest(l, r, cnt);
}
};
template< typename T, int MAXLOG >
struct CompressedWaveletMatrix {
WaveletMatrix< int, MAXLOG > mat;
vector< T > ys;
CompressedWaveletMatrix(const vector< T > &v) : ys(v) {
sort(begin(ys), end(ys));
ys.erase(unique(begin(ys), end(ys)), end(ys));
vector< int > t(v.size());
for(int i = 0; i < v.size(); i++) t[i] = get(v[i]);
mat = WaveletMatrix< int, MAXLOG >(t);
}
inline int get(const T& x) {
return lower_bound(begin(ys), end(ys), x) - begin(ys);
}
T access(int k) {
return ys[mat.access(k)];
}
T operator[](const int &k) {
return access(k);
}
int rank(const T &x, int r) {
auto pos = get(x);
if(pos == ys.size() || ys[pos] != x) return 0;
return mat.rank(pos, r);
}
T kth_smallest(int l, int r, int k) {
return ys[mat.kth_smallest(l, r, k)];
}
T kth_largest(int l, int r, int k) {
return ys[mat.kth_largest(l, r, k)];
}
int range_freq(int l, int r, T upper) {
return mat.range_freq(l, r, get(upper));
}
int range_freq(int l, int r, T lower, T upper) {
return mat.range_freq(l, r, get(lower), get(upper));
}
T prev_value(int l, int r, T upper) {
auto ret = mat.prev_value(l, r, get(upper));
return ret == -1 ? T(-1) : ys[ret];
}
T next_value(int l, int r, T lower) {
auto ret = mat.next_value(l, r, get(lower));
return ret == -1 ? T(-1) : ys[ret];
}
};
int main() {
cin.tie(0);
ios::sync_with_stdio(false);
ll N;
cin >> N;
vector<ll> A(N);
rep(i, 0, N) cin >> A[i];
WaveletMatrix<ll, 32> wm(A);
ll ans = INF;
rep(i, 1, N-1) {
ll l = wm.next_value(0, i, 0);
ll r = wm.next_value(i+1, N, 0);
if (l < A[i] and r < A[i]) {
chmin(ans, l+r+A[i]);
}
l = wm.next_value(0, i, A[i]+1);
r = wm.next_value(i+1, N, A[i]+1);
if (l != -1 and r != -1) {
chmin(ans, l+r+A[i]);
}
}
if (ans == INF) {
print(-1);
} else {
print(ans);
}
return 0;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0