結果

問題 No.1294 マウンテン数列
ユーザー kcvlex
提出日時 2020-11-20 23:14:42
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 241 ms / 2,000 ms
コード長 8,807 bytes
コンパイル時間 1,298 ms
コンパイル使用メモリ 153,380 KB
最終ジャッジ日時 2025-01-16 03:16:41
ジャッジサーバーID
(参考情報)
judge3 / judge1
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
other AC * 17
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#include <limits>
#include <initializer_list>
#include <utility>
#include <bitset>
#include <tuple>
#include <type_traits>
#include <functional>
#include <string>
#include <array>
#include <deque>
#include <list>
#include <queue>
#include <stack>
#include <vector>
#include <map>
#include <set>
#include <unordered_map>
#include <unordered_set>
#include <iterator>
#include <algorithm>
#include <complex>
#include <random>
#include <numeric>
#include <iostream>
#include <iomanip>
#include <sstream>
#include <regex>
#include <cassert>
#include <cstddef>
#include <variant>
#define endl codeforces
#define ALL(v) std::begin(v), std::end(v)
#define ALLR(v) std::rbegin(v), std::rend(v)
using ll = std::int64_t;
using ull = std::uint64_t;
using pii = std::pair<int, int>;
using tii = std::tuple<int, int, int>;
using pll = std::pair<ll, ll>;
using tll = std::tuple<ll, ll, ll>;
using size_type = ssize_t;
template <typename T> using vec = std::vector<T>;
template <typename T> using vvec = vec<vec<T>>;
template <typename T> const T& var_min(const T &t) { return t; }
template <typename T> const T& var_max(const T &t) { return t; }
template <typename T, typename... Tail> const T& var_min(const T &t, const Tail&... tail) { return std::min(t, var_min(tail...)); }
template <typename T, typename... Tail> const T& var_max(const T &t, const Tail&... tail) { return std::max(t, var_max(tail...)); }
template <typename T, typename... Tail> void chmin(T &t, const Tail&... tail) { t = var_min(t, tail...); }
template <typename T, typename... Tail> void chmax(T &t, const Tail&... tail) { t = var_max(t, tail...); }
template <typename T, std::size_t Head, std::size_t... Tail>
struct multi_dim_array { using type = std::array<typename multi_dim_array<T, Tail...>::type, Head>; };
template <typename T, std::size_t Head>
struct multi_dim_array<T, Head> { using type = std::array<T, Head>; };
template <typename T, std::size_t... Args> using mdarray = typename multi_dim_array<T, Args...>::type;
template <typename T, typename F, typename... Args>
void fill_seq(T &t, F f, Args... args) {
if constexpr (std::is_invocable<F, Args...>::value) {
t = f(args...);
} else {
for (size_type i = 0; i < t.size(); i++) fill_seq(t[i], f, args..., i);
}
}
template <typename T> vec<T> make_v(size_type sz) { return vec<T>(sz); }
template <typename T, typename... Tail>
auto make_v(size_type hs, Tail&&... ts) {
auto v = std::move(make_v<T>(std::forward<Tail>(ts)...));
return vec<decltype(v)>(hs, v);
}
namespace init__ {
struct InitIO {
InitIO() {
std::cin.tie(nullptr);
std::ios_base::sync_with_stdio(false);
std::cout << std::fixed << std::setprecision(30);
}
} init_io;
}
template <typename T>
T ceil_pow2(T bound) {
T ret = 1;
while (ret < bound) ret *= 2;
return ret;
}
template <typename T>
T ceil_div(T a, T b) { return a / b + !!(a % b); }
namespace math {
template <typename T>
constexpr T mul_id_ele() {
if constexpr (std::is_fundamental<T>::value) {
return T(1);
} else {
return T::mul_id_ele();
}
}
template <typename T>
constexpr T add_id_ele() {
if constexpr (std::is_fundamental<T>::value) {
return T(0);
} else {
return T::add_id_ele();
}
}
template <typename T>
constexpr T pow(const T &n, ll k) {
T ret = mul_id_ele<T>();
T cur = n;
while (k) {
if (k & 1) ret *= cur;
cur *= cur;
k /= 2;
}
return ret;
}
template <typename T>
typename std::enable_if<std::is_integral<T>::value, T>::type
gcd(T a, T b) { return b ? gcd(a % b, b) : a; }
}
namespace math {
template <ull Mod>
struct Modint {
constexpr Modint(ll x) noexcept : x((Mod + x % static_cast<ll>(Mod)) % Mod) { }
constexpr Modint() noexcept : Modint(0) { }
constexpr static Modint add_id_ele() {
return Modint(0);
}
constexpr static Modint mul_id_ele() {
return Modint(1);
}
constexpr ll value() const noexcept {
return static_cast<ll>(x);
}
constexpr Modint& operator+=(const Modint &oth) noexcept {
x += oth.value();
if (Mod <= x) x -= Mod;
return *this;
}
constexpr Modint& operator-=(const Modint &oth) noexcept {
x += Mod - oth.value();
if (Mod <= x) x -= Mod;
return *this;
}
constexpr Modint& operator*=(const Modint &oth) noexcept {
x *= oth.value();
x %= Mod;
return *this;
}
constexpr Modint& operator/=(const Modint &oth) noexcept {
x *= oth.inv().value();
x %= Mod;
return *this;
}
constexpr Modint operator+(const Modint &oth) const noexcept {
return Modint(x) += oth;
}
constexpr Modint operator-(const Modint &oth) const noexcept {
return Modint(x) -= oth;
}
constexpr Modint operator*(const Modint &oth) const noexcept {
return Modint(x) *= oth;
}
constexpr Modint operator/(const Modint &oth) const noexcept {
return Modint(x) /= oth;
}
constexpr Modint operator-() const noexcept {
return Modint((x != 0) * (Mod - x));
}
constexpr bool operator==(const Modint &oth) const noexcept {
return value() == oth.value();
}
template <typename T>
constexpr typename std::enable_if<std::is_integral<T>::value, const Modint&>::type
operator=(T t) noexcept {
(*this) = Modint(std::forward<T>(t));
return *this;
}
constexpr Modint inv() const noexcept {
return ::math::pow(*this, Mod - 2);
}
constexpr ull mod() const noexcept {
return Mod;
}
private:
ull x;
};
template <ull Mod>
Modint<Mod> inv(Modint<Mod> m) {
return m.inv();
}
template <ull Mod>
std::istream& operator>>(std::istream &is, Modint<Mod> &m) {
ll v;
is >> v;
m = v;
return is;
}
template <ull Mod>
std::ostream& operator<<(std::ostream &os, Modint<Mod> m) {
os << m.value();
return os;
}
}
namespace tree {
template <typename T>
class BIT {
vec<T> data;
public:
const T id_ele;
BIT() : id_ele() { }
BIT(size_type sz, T id_ele) : id_ele(id_ele) {
data = vec<T>(ceil_pow2(sz) + 1, id_ele);
}
/*
template <typename F>
BIT(F f, size_type sz, T id_ele) : id_ele(id_ele) {
data = vec<T>(ceil_pow2(sz) + 1, id_ele);
for (size_type i = 0; i < sz; i++) {
data[i + 1] = f(i);
size_type par = i + (i & -i);
if (par < size_type(data.size())) data[par] += data[i + 1];
}
}
BIT(vec<T> d, T id_ele) : data(d), id_ele(id_ele) {
size_type sz = data.size();
data.resize(ceil_pow2(sz));
}
*/
// [0, pos)
T sum(size_type pos) const noexcept {
T ret = id_ele;
for (; 0 < pos; pos -= pos & -pos) ret += data[pos];
return ret;
}
// [l, r)
T sum(size_type l, size_type r) const noexcept {
return sum(r) - sum(l);
}
void add(ll pos, T delta) noexcept {
for (++pos; pos < size_type(data.size()); pos += pos & -pos) data[pos] += delta;
}
// sum(ret) < bound <= sum(ret+1)
size_type lower_bound(T bound) const noexcept {
if (data.back() < bound) return data.size();
T sum = id_ele;
size_type ret = 0;
for (size_type i = size_type(data.size() - 1) / 2; 0 < i; i /= 2) {
if (sum + data[ret + i] < bound) {
ret += i;
sum += data[ret];
}
}
return ret;
}
const vec<T>& raw() const {
return data;
}
};
}
constexpr ll mod = 998'244'353;
constexpr size_type SIZE = 2510;
using mint = math::Modint<mod>;
int main() {
ll n;
std::cin >> n;
vec<ll> av(n);
for (ll &e : av) std::cin >> e;
vec<mint> count(SIZE, 0);
for (ll i = 1; i <= SIZE; i++) {
tree::BIT<mint> bt(SIZE, 0);
bt.add(0, 1);
ll pre = av[0];
bool ok = true;
for (ll j = 1; j < n - 1; j++) {
ll cur = av[j];
// cur - bound <= i
// cur - i <= bound
if (i < cur - pre) {
ok = false;
break;
}
ll bound = std::max<ll>(1, cur - i);
mint tmp = bt.sum(bound, SIZE);
bt.add(pre, tmp + 1);
pre = cur;
}
ll cur = av.back();
if (!ok) continue;
ll bound = std::max<ll>(1, cur - i);
count[i] = bt.sum(bound, SIZE);
if (cur - pre <= i) count[i] += 1;
count[i] *= 2;
}
mint ans = 0;
for (ll i = 1; i <= SIZE; i++) ans += (mint(i) * (count[i] - count[i - 1]));
std::cout << ans << '\n';
return 0;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0