結果
問題 | No.1294 マウンテン数列 |
ユーザー | LayCurse |
提出日時 | 2020-11-20 23:19:30 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 33 ms / 2,000 ms |
コード長 | 6,747 bytes |
コンパイル時間 | 2,764 ms |
コンパイル使用メモリ | 215,576 KB |
実行使用メモリ | 6,944 KB |
最終ジャッジ日時 | 2024-07-23 13:52:36 |
合計ジャッジ時間 | 3,880 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge4 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,816 KB |
testcase_01 | AC | 2 ms
6,944 KB |
testcase_02 | AC | 2 ms
6,940 KB |
testcase_03 | AC | 2 ms
6,944 KB |
testcase_04 | AC | 2 ms
6,940 KB |
testcase_05 | AC | 6 ms
6,944 KB |
testcase_06 | AC | 7 ms
6,944 KB |
testcase_07 | AC | 2 ms
6,940 KB |
testcase_08 | AC | 2 ms
6,940 KB |
testcase_09 | AC | 1 ms
6,944 KB |
testcase_10 | AC | 32 ms
6,944 KB |
testcase_11 | AC | 33 ms
6,944 KB |
testcase_12 | AC | 33 ms
6,940 KB |
testcase_13 | AC | 33 ms
6,944 KB |
testcase_14 | AC | 31 ms
6,944 KB |
testcase_15 | AC | 31 ms
6,944 KB |
testcase_16 | AC | 32 ms
6,944 KB |
ソースコード
#pragma GCC optimize ("Ofast") #include<bits/stdc++.h> using namespace std; #define MD (998244353U) template<class S, class T> inline S max_L(S a,T b){ return a>=b?a:b; } struct Modint{ unsigned val; Modint(){ val=0; } Modint(int a){ val = ord(a); } Modint(unsigned a){ val = ord(a); } Modint(long long a){ val = ord(a); } Modint(unsigned long long a){ val = ord(a); } inline unsigned ord(unsigned a){ return a%MD; } inline unsigned ord(int a){ a %= (int)MD; if(a < 0){ a += MD; } return a; } inline unsigned ord(unsigned long long a){ return a%MD; } inline unsigned ord(long long a){ a %= (int)MD; if(a < 0){ a += MD; } return a; } inline unsigned get(){ return val; } inline Modint &operator+=(Modint a){ val += a.val; if(val >= MD){ val -= MD; } return *this; } inline Modint &operator-=(Modint a){ if(val < a.val){ val = val + MD - a.val; } else{ val -= a.val; } return *this; } inline Modint &operator*=(Modint a){ val = ((unsigned long long)val*a.val)%MD; return *this; } inline Modint &operator/=(Modint a){ return *this *= a.inverse(); } inline Modint operator+(Modint a){ return Modint(*this)+=a; } inline Modint operator-(Modint a){ return Modint(*this)-=a; } inline Modint operator*(Modint a){ return Modint(*this)*=a; } inline Modint operator/(Modint a){ return Modint(*this)/=a; } inline Modint operator+(int a){ return Modint(*this)+=Modint(a); } inline Modint operator-(int a){ return Modint(*this)-=Modint(a); } inline Modint operator*(int a){ return Modint(*this)*=Modint(a); } inline Modint operator/(int a){ return Modint(*this)/=Modint(a); } inline Modint operator+(long long a){ return Modint(*this)+=Modint(a); } inline Modint operator-(long long a){ return Modint(*this)-=Modint(a); } inline Modint operator*(long long a){ return Modint(*this)*=Modint(a); } inline Modint operator/(long long a){ return Modint(*this)/=Modint(a); } inline Modint operator-(void){ Modint res; if(val){ res.val=MD-val; } else{ res.val=0; } return res; } inline operator bool(void){ return val!=0; } inline operator int(void){ return get(); } inline operator long long(void){ return get(); } inline Modint inverse(){ int a = val; int b = MD; int u = 1; int v = 0; int t; Modint res; while(b){ t = a / b; a -= t * b; swap(a, b); u -= t * v; swap(u, v); } if(u < 0){ u += MD; } res.val = u; return res; } inline Modint pw(unsigned long long b){ Modint a(*this); Modint res; res.val = 1; while(b){ if(b&1){ res *= a; } b >>= 1; a *= a; } return res; } inline bool operator==(int a){ return ord(a)==val; } inline bool operator!=(int a){ return ord(a)!=val; } } ; inline Modint operator+(int a, Modint b){ return Modint(a)+=b; } inline Modint operator-(int a, Modint b){ return Modint(a)-=b; } inline Modint operator*(int a, Modint b){ return Modint(a)*=b; } inline Modint operator/(int a, Modint b){ return Modint(a)/=b; } inline Modint operator+(long long a, Modint b){ return Modint(a)+=b; } inline Modint operator-(long long a, Modint b){ return Modint(a)-=b; } inline Modint operator*(long long a, Modint b){ return Modint(a)*=b; } inline Modint operator/(long long a, Modint b){ return Modint(a)/=b; } inline int my_getchar_unlocked(){ static char buf[1048576]; static int s = 1048576; static int e = 1048576; if(s == e && e == 1048576){ e = fread_unlocked(buf, 1, 1048576, stdin); s = 0; } if(s == e){ return EOF; } return buf[s++]; } inline void rd(int &x){ int k; int m=0; x=0; for(;;){ k = my_getchar_unlocked(); if(k=='-'){ m=1; break; } if('0'<=k&&k<='9'){ x=k-'0'; break; } } for(;;){ k = my_getchar_unlocked(); if(k<'0'||k>'9'){ break; } x=x*10+k-'0'; } if(m){ x=-x; } } struct MY_WRITER{ char buf[1048576]; int s; int e; MY_WRITER(){ s = 0; e = 1048576; } ~MY_WRITER(){ if(s){ fwrite_unlocked(buf, 1, s, stdout); } } } ; MY_WRITER MY_WRITER_VAR; void my_putchar_unlocked(int a){ if(MY_WRITER_VAR.s == MY_WRITER_VAR.e){ fwrite_unlocked(MY_WRITER_VAR.buf, 1, MY_WRITER_VAR.s, stdout); MY_WRITER_VAR.s = 0; } MY_WRITER_VAR.buf[MY_WRITER_VAR.s++] = a; } inline void wt_L(char a){ my_putchar_unlocked(a); } inline void wt_L(int x){ int s=0; int m=0; char f[10]; if(x<0){ m=1; x=-x; } while(x){ f[s++]=x%10; x/=10; } if(!s){ f[s++]=0; } if(m){ my_putchar_unlocked('-'); } while(s--){ my_putchar_unlocked(f[s]+'0'); } } inline void wt_L(Modint x){ int i; i = (int)x; wt_L(i); } int N; int A[2501]; int samx[2501]; int go[2501]; Modint dp[2501]; Modint dps[2501]; Modint cnt[2501]; int main(){ int h, i; Modint res = 0; rd(N); { int Lj4PdHRW; for(Lj4PdHRW=(0);Lj4PdHRW<(N);Lj4PdHRW++){ rd(A[Lj4PdHRW]); } } for(i=(1);i<(N);i++){ samx[i] =max_L(samx[i-1], A[i] - A[i-1]); } for(i=(0);i<(N);i++){ go[i] = i; } for(h=(1);h<(2501);h++){ if(A[N-1]-A[N-2] <= h){ dp[0] = 0; dps[0] = 0; for(i=(0);i<(N-1);i++){ dp[i+1] = 0; while(go[i+1] > 1 && A[i+1] - A[go[i+1]-2] <= h){ go[i+1]--; } dp[i+1] += dps[i] - dps[go[i+1]-1]; if(samx[i] <= h){ dp[i+1] += 1; } dps[i+1] = dps[i] + dp[i+1]; } cnt[h] = dp[N-1]; } } for(i=(1);i<(2501);i++){ res += i * (cnt[i] - cnt[i-1]); } wt_L(res * 2); wt_L('\n'); return 0; } // cLay version 20201120-1 [beta] // --- original code --- // #define MD 998244353 // int N, A[2501], samx[2501], go[2501]; // Modint dp[2501], dps[2501], cnt[2501]; // { // Modint res = 0; // rd(N,A(N)); // // rep(i,1,N) samx[i] = max(samx[i-1], A[i] - A[i-1]); // rep(i,N) go[i] = i; // // rep(h,1,2501) if(A[N-1]-A[N-2] <= h){ // dp[0] = 0; // dps[0] = 0; // rep(i,N-1){ // dp[i+1] = 0; // while(go[i+1] > 1 && A[i+1] - A[go[i+1]-2] <= h) go[i+1]--; // dp[i+1] += dps[i] - dps[go[i+1]-1]; // // rrep(j,1,i+1) if(A[i+1] - A[j-1] <= h) dp[i+1] += dp[j]; // if(samx[i] <= h) dp[i+1] += 1; // dps[i+1] = dps[i] + dp[i+1]; // } // cnt[h] = dp[N-1]; // } // rep(i,1,2501) res += i * (cnt[i] - cnt[i-1]); // wt(res * 2); // }