結果
問題 | No.1294 マウンテン数列 |
ユーザー | jell |
提出日時 | 2020-11-21 16:26:15 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 1,018 ms / 2,000 ms |
コード長 | 64,578 bytes |
コンパイル時間 | 3,026 ms |
コンパイル使用メモリ | 282,624 KB |
実行使用メモリ | 6,944 KB |
最終ジャッジ日時 | 2024-07-23 15:43:57 |
合計ジャッジ時間 | 10,588 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,816 KB |
testcase_01 | AC | 3 ms
6,940 KB |
testcase_02 | AC | 2 ms
6,940 KB |
testcase_03 | AC | 2 ms
6,940 KB |
testcase_04 | AC | 2 ms
6,940 KB |
testcase_05 | AC | 82 ms
6,940 KB |
testcase_06 | AC | 120 ms
6,944 KB |
testcase_07 | AC | 2 ms
6,944 KB |
testcase_08 | AC | 2 ms
6,944 KB |
testcase_09 | AC | 2 ms
6,940 KB |
testcase_10 | AC | 1,018 ms
6,940 KB |
testcase_11 | AC | 1,015 ms
6,944 KB |
testcase_12 | AC | 1,018 ms
6,940 KB |
testcase_13 | AC | 1,016 ms
6,944 KB |
testcase_14 | AC | 820 ms
6,944 KB |
testcase_15 | AC | 931 ms
6,940 KB |
testcase_16 | AC | 822 ms
6,940 KB |
ソースコード
#line 1 "Library/yu2.cc" /* * @file template.cpp * @brief Template */ #include <bits/extc++.h> #line 2 "Library/lib/alias" /* * @file alias * @brief Alias */ #line 13 "Library/lib/alias" namespace workspace { constexpr char eol = '\n'; using namespace std; using i32 = int_least32_t; using i64 = int_least64_t; using i128 = __int128_t; using u32 = uint_least32_t; using u64 = uint_least64_t; using u128 = __uint128_t; template <class T, class Comp = less<T>> using priority_queue = std::priority_queue<T, vector<T>, Comp>; template <class T> using stack = std::stack<T, vector<T>>; } // namespace workspace #line 2 "Library/lib/cxx20" /* * @file cxx20 * @brief C++20 Features */ #if __cplusplus <= 201703L #include <vector> namespace std { /* * @fn erase_if * @brief Erase the elements of a container that do not satisfy the condition. * @param __cont Container. * @param __pred Predicate. * @return Number of the erased elements. */ template <typename _Tp, typename _Alloc, typename _Predicate> inline typename vector<_Tp, _Alloc>::size_type erase_if( vector<_Tp, _Alloc>& __cont, _Predicate __pred) { const auto __osz = __cont.size(); __cont.erase(std::remove_if(__cont.begin(), __cont.end(), __pred), __cont.end()); return __osz - __cont.size(); } /* * @fn erase * @brief Erase the elements of a container that are equal to the given value. * @param __cont Container. * @param __value Value. * @return Number of the erased elements. */ template <typename _Tp, typename _Alloc, typename _Up> inline typename vector<_Tp, _Alloc>::size_type erase( vector<_Tp, _Alloc>& __cont, const _Up& __value) { const auto __osz = __cont.size(); __cont.erase(std::remove(__cont.begin(), __cont.end(), __value), __cont.end()); return __osz - __cont.size(); } } // namespace std #endif #line 2 "Library/lib/option" /* * @file option * @brief Optimize Options */ #ifdef ONLINE_JUDGE #pragma GCC optimize("O3") #pragma GCC target("avx,avx2") #pragma GCC optimize("unroll-loops") #endif #line 2 "Library/src/utils/binary_search.hpp" /* * @file binary_search.hpp * @brief Binary Search */ #if __cplusplus >= 201703L #include <cassert> #include <cmath> #include <vector> namespace workspace { /* * @fn binary_search * @brief binary search on a discrete range. * @param ok pred(ok) is true * @param ng pred(ng) is false * @param pred the predicate * @return the closest point to (ng) where pred is true */ template <class iter_type, class pred_type> std::enable_if_t< std::is_convertible_v<std::invoke_result_t<pred_type, iter_type>, bool>, iter_type> binary_search(iter_type ok, iter_type ng, pred_type pred) { assert(ok != ng); std::make_signed_t<decltype(ng - ok)> dist(ng - ok); while (1 < dist || dist < -1) { iter_type mid(ok + dist / 2); if (pred(mid)) ok = mid, dist -= dist / 2; else ng = mid, dist /= 2; } return ok; } /* * @fn parallel_binary_search * @brief parallel binary search on discrete ranges. * @param ends a vector of pairs; pred(first) is true, pred(second) is false * @param pred the predicate * @return the closest points to (second) where pred is true */ template <class iter_type, class pred_type> std::enable_if_t<std::is_convertible_v< std::invoke_result_t<pred_type, std::vector<iter_type>>, std::vector<bool>>, std::vector<iter_type>> parallel_binary_search(std::vector<std::pair<iter_type, iter_type>> ends, pred_type pred) { std::vector<iter_type> mids(ends.size()); for (;;) { bool all_found = true; for (size_t i{}; i != ends.size(); ++i) { auto [ok, ng] = ends[i]; iter_type mid(ok + (ng - ok) / 2); if (mids[i] != mid) { all_found = false; mids[i] = mid; } } if (all_found) break; auto res = pred(mids); for (size_t i{}; i != ends.size(); ++i) { (res[i] ? ends[i].first : ends[i].second) = mids[i]; } } return mids; } /* * @fn binary_search * @brief binary search on the real number line. * @param ok pred(ok) is true * @param ng pred(ng) is false * @param eps the error tolerance * @param pred the predicate * @return the boundary point */ template <class real_type, class pred_type> std::enable_if_t< std::is_convertible_v<std::invoke_result_t<pred_type, real_type>, bool>, real_type> binary_search(real_type ok, real_type ng, const real_type eps, pred_type pred) { assert(ok != ng); for (auto loops = 0; loops != std::numeric_limits<real_type>::digits && (ok + eps < ng || ng + eps < ok); ++loops) { real_type mid{(ok + ng) / 2}; (pred(mid) ? ok : ng) = mid; } return ok; } /* * @fn parallel_binary_search * @brief parallel binary search on the real number line. * @param ends a vector of pairs; pred(first) is true, pred(second) is false * @param eps the error tolerance * @param pred the predicate * @return the boundary points */ template <class real_type, class pred_type> std::enable_if_t<std::is_convertible_v< std::invoke_result_t<pred_type, std::vector<real_type>>, std::vector<bool>>, std::vector<real_type>> parallel_binary_search(std::vector<std::pair<real_type, real_type>> ends, const real_type eps, pred_type pred) { std::vector<real_type> mids(ends.size()); for (auto loops = 0; loops != std::numeric_limits<real_type>::digits; ++loops) { bool all_found = true; for (size_t i{}; i != ends.size(); ++i) { auto [ok, ng] = ends[i]; if (ok + eps < ng || ng + eps < ok) { all_found = false; mids[i] = (ok + ng) / 2; } } if (all_found) break; auto res = pred(mids); for (size_t i{}; i != ends.size(); ++i) { (res[i] ? ends[i].first : ends[i].second) = mids[i]; } } return mids; } } // namespace workspace #endif #line 2 "Library/src/utils/chval.hpp" /* * @file chval.hpp * @brief Change Less/Greater */ #line 9 "Library/src/utils/chval.hpp" namespace workspace { /* * @fn chle * @brief Substitute y for x if comp(y, x) is true. * @param x Reference * @param y Const reference * @param comp Compare function * @return Whether or not x is updated */ template <class Tp, class Comp = std::less<Tp>> bool chle(Tp &x, const Tp &y, Comp comp = Comp()) { return comp(y, x) ? x = y, true : false; } /* * @fn chge * @brief Substitute y for x if comp(x, y) is true. * @param x Reference * @param y Const reference * @param comp Compare function * @return Whether or not x is updated */ template <class Tp, class Comp = std::less<Tp>> bool chge(Tp &x, const Tp &y, Comp comp = Comp()) { return comp(x, y) ? x = y, true : false; } } // namespace workspace #line 2 "Library/src/utils/clock.hpp" /* * @fn clock.hpp * @brief Clock */ #line 9 "Library/src/utils/clock.hpp" namespace workspace { using namespace std::chrono; namespace internal { // The start time of the program. const auto start_time{system_clock::now()}; } // namespace internal /* * @fn elapsed * @return elapsed time of the program */ int64_t elapsed() { const auto end_time{system_clock::now()}; return duration_cast<milliseconds>(end_time - internal::start_time).count(); } } // namespace workspace #line 5 "Library/src/utils/coordinate_compression.hpp" template <class T> class coordinate_compression { std::vector<T> uniquely; std::vector<size_t> compressed; public: coordinate_compression(const std::vector<T> &raw) : uniquely(raw), compressed(raw.size()) { std::sort(uniquely.begin(), uniquely.end()); uniquely.erase(std::unique(uniquely.begin(), uniquely.end()), uniquely.end()); for (size_t i = 0; i != size(); ++i) compressed[i] = std::lower_bound(uniquely.begin(), uniquely.end(), raw[i]) - uniquely.begin(); } size_t operator[](const size_t idx) const { assert(idx < size()); return compressed[idx]; } size_t size() const { return compressed.size(); } size_t count() const { return uniquely.size(); } T value(const size_t ord) const { assert(ord < count()); return uniquely[ord]; } size_t order(const T &value) const { return std::lower_bound(uniquely.begin(), uniquely.end(), value) - uniquely.begin(); } auto begin() { return compressed.begin(); } auto end() { return compressed.end(); } auto rbegin() { return compressed.rbegin(); } auto rend() { return compressed.rend(); } }; #line 2 "Library/src/utils/ejection.hpp" /* * @file ejection.hpp * @brief Ejection */ #line 9 "Library/src/utils/ejection.hpp" namespace workspace { /* * @brief eject from a try block, throw nullptr * @param arg output */ template <class Tp> void eject(Tp const &arg) { std::cout << arg << "\n"; throw nullptr; } } // namespace workspace #line 2 "Library/src/utils/fixed_point.hpp" /* * @file fixed_point.hpp * @brief Fixed Point Combinator */ #line 9 "Library/src/utils/fixed_point.hpp" namespace workspace { /* * @class fixed_point * @brief Recursive calling of lambda expression. */ template <class lambda_type> class fixed_point { lambda_type func; public: /* * @param func 1st arg callable with the rest of args, and the return type * specified. */ fixed_point(lambda_type &&func) : func(std::move(func)) {} /* * @brief Recursively apply *this to 1st arg of func. * @param args Arguments of the recursive method. */ template <class... Args> auto operator()(Args &&... args) const { return func(*this, std::forward<Args>(args)...); } }; } // namespace workspace #line 6 "Library/src/utils/hash.hpp" #line 2 "Library/src/utils/sfinae.hpp" /* * @file sfinae.hpp * @brief SFINAE */ #line 10 "Library/src/utils/sfinae.hpp" #include <type_traits> template <typename T, class = void> struct is_complete : std::false_type {}; template <typename T> struct is_complete<T, decltype(void(sizeof(T)))> : std::true_type {}; template <class type, template <class> class trait> using enable_if_trait_type = typename std::enable_if<trait<type>::value>::type; template <class Container> using element_type = typename std::decay<decltype( *std::begin(std::declval<Container&>()))>::type; template <class T, class = int> struct mapped_of { using type = element_type<T>; }; template <class T> struct mapped_of<T, typename std::pair<int, typename T::mapped_type>::first_type> { using type = typename T::mapped_type; }; template <class T> using mapped_type = typename mapped_of<T>::type; template <class T, class = void> struct is_integral_ext : std::false_type {}; template <class T> struct is_integral_ext< T, typename std::enable_if<std::is_integral<T>::value>::type> : std::true_type {}; template <> struct is_integral_ext<__int128_t> : std::true_type {}; template <> struct is_integral_ext<__uint128_t> : std::true_type {}; #if __cplusplus >= 201402 template <class T> constexpr static bool is_integral_ext_v = is_integral_ext<T>::value; #endif template <typename T, typename = void> struct multiplicable_uint { using type = uint_least32_t; }; template <typename T> struct multiplicable_uint<T, typename std::enable_if<(2 < sizeof(T))>::type> { using type = uint_least64_t; }; template <typename T> struct multiplicable_uint<T, typename std::enable_if<(4 < sizeof(T))>::type> { using type = __uint128_t; }; #line 8 "Library/src/utils/hash.hpp" namespace workspace { template <class T, class = void> struct hash : std::hash<T> {}; #if __cplusplus >= 201703L template <class Unique_bits_type> struct hash<Unique_bits_type, enable_if_trait_type<Unique_bits_type, std::has_unique_object_representations>> { size_t operator()(uint64_t x) const { static const uint64_t m = std::random_device{}(); x ^= x >> 23; x ^= m; x ^= x >> 47; return x - (x >> 32); } }; #endif template <class Key> size_t hash_combine(const size_t &seed, const Key &key) { return seed ^ (hash<Key>()(key) + 0x9e3779b9 /* + (seed << 6) + (seed >> 2) */); } template <class T1, class T2> struct hash<std::pair<T1, T2>> { size_t operator()(const std::pair<T1, T2> &pair) const { return hash_combine(hash<T1>()(pair.first), pair.second); } }; template <class... T> class hash<std::tuple<T...>> { template <class Tuple, size_t index = std::tuple_size<Tuple>::value - 1> struct tuple_hash { static uint64_t apply(const Tuple &t) { return hash_combine(tuple_hash<Tuple, index - 1>::apply(t), std::get<index>(t)); } }; template <class Tuple> struct tuple_hash<Tuple, size_t(-1)> { static uint64_t apply(const Tuple &t) { return 0; } }; public: uint64_t operator()(const std::tuple<T...> &t) const { return tuple_hash<std::tuple<T...>>::apply(t); } }; template <class hash_table> struct hash_table_wrapper : hash_table { using key_type = typename hash_table::key_type; size_t count(const key_type &key) const { return hash_table::find(key) != hash_table::end(); } template <class... Args> auto emplace(Args &&... args) { return hash_table::insert(typename hash_table::value_type(args...)); } }; template <class Key, class Mapped = __gnu_pbds::null_type> using cc_hash_table = hash_table_wrapper<__gnu_pbds::cc_hash_table<Key, Mapped, hash<Key>>>; template <class Key, class Mapped = __gnu_pbds::null_type> using gp_hash_table = hash_table_wrapper<__gnu_pbds::gp_hash_table<Key, Mapped, hash<Key>>>; template <class Key, class Mapped> using unordered_map = std::unordered_map<Key, Mapped, hash<Key>>; template <class Key> using unordered_set = std::unordered_set<Key, hash<Key>>; } // namespace workspace #line 2 "Library/src/utils/io/casefmt.hpp" /* * @file castfmt * @brief Case Output Format */ #line 2 "Library/src/utils/iterate_case.hpp" /* * @file iterate_case.hpp * @brief Iterate Testcases */ namespace workspace { namespace internal { // The 1-based index of the current testcase. unsigned caseid; } // namespace internal void main(); unsigned case_number(); /* * @fn iterate_main * @brief Iterate main function. */ void iterate_main() { for (unsigned total = case_number(), &counter = (internal::caseid = 1); counter <= total; ++counter) { try { main(); } catch (std::nullptr_t) { } } } } // namespace workspace #line 9 "Library/src/utils/io/casefmt.hpp" namespace workspace { /* * @fn casefmt * @brief printf("Case #%u: ", internal::caseid) * @param os Reference to ostream * @return os */ std::ostream& casefmt(std::ostream& os) { return os << "Case #" << internal::caseid << ": "; } } // namespace workspace #line 3 "Library/src/utils/io/read.hpp" namespace workspace { namespace internal { struct cast_read { template <class T> operator T() const { T value; workspace::cin >> value; return value; } }; } // namespace internal /* * @fn read * @tparam Tp The type of input. * @brief Read from stdin. */ template <class Tp = void> auto read() { typename std::remove_const<Tp>::type value; cin >> value; return value; } /* * @fn read * @brief Read from stdin on type casting. */ template <> auto read<void>() { return internal::cast_read(); } } // namespace workspace #line 2 "Library/src/utils/io/setup.hpp" /* * @file setup.hpp * @brief I/O Setup */ #line 10 "Library/src/utils/io/setup.hpp" namespace workspace { /* * @fn io_setup * @brief Setup I/O before main process. */ __attribute__((constructor)) void io_setup() { std::ios::sync_with_stdio(false); std::cin.tie(nullptr); std::cout << std::fixed << std::setprecision(15); #ifdef _buffer_check atexit([] { char bufc; if (std::cin >> bufc) std::cerr << "\n\033[43m\033[30mwarning: buffer not empty.\033[0m\n\n"; }); #endif } } // namespace workspace #line 2 "Library/src/utils/io/stream.hpp" /* * @file stream.hpp * @brief Stream */ #include <cxxabi.h> #line 13 "Library/src/utils/io/stream.hpp" namespace workspace { /* * @class istream * @brief A wrapper class for std::istream. */ class istream : std::istream { template <class Tp, typename = std::nullptr_t> struct helper { helper(std::istream &is, Tp &x) { for (auto &&e : x) helper<decltype(e)>(is, e); } }; template <class Tp> struct helper< Tp, decltype(std::declval<std::decay<decltype( std::declval<std::istream &>() >> std::declval<Tp &>())>>(), nullptr)> { helper(std::istream &is, Tp &x) { is >> x; } }; template <class T1, class T2> struct helper<std::pair<T1, T2>> { helper(std::istream &is, std::pair<T1, T2> &x) { helper<T1>(is, x.first), helper<T2>(is, x.second); } }; template <class... Tps> struct helper<std::tuple<Tps...>> { helper(std::istream &is, std::tuple<Tps...> &x) { iterate(is, x); } private: template <class Tp, size_t N = 0> void iterate(std::istream &is, Tp &x) { if constexpr (N == std::tuple_size<Tp>::value) return; else helper<typename std::tuple_element<N, Tp>::type>(is, std::get<N>(x)), iterate<Tp, N + 1>(is, x); } }; public: template <typename Tp> istream &operator>>(Tp &x) { helper<Tp>(*this, x); if (std::istream::fail()) { static auto once = atexit([] { std::cerr << "\n\033[43m\033[30mwarning: failed to read \'" << abi::__cxa_demangle(typeid(Tp).name(), 0, 0, 0) << "\'.\033[0m\n\n"; }); assert(!once); } return *this; } }; namespace internal { auto *const cin_ptr = (istream *)&std::cin; } auto &cin = *internal::cin_ptr; // operator<< overloads template <class T, class U> std::ostream &operator<<(std::ostream &os, const std::pair<T, U> &p) { return os << p.first << ' ' << p.second; } template <class tuple_t, size_t index> struct tuple_os { static std::ostream &apply(std::ostream &os, const tuple_t &t) { tuple_os<tuple_t, index - 1>::apply(os, t); return os << ' ' << std::get<index>(t); } }; template <class tuple_t> struct tuple_os<tuple_t, 0> { static std::ostream &apply(std::ostream &os, const tuple_t &t) { return os << std::get<0>(t); } }; template <class tuple_t> struct tuple_os<tuple_t, SIZE_MAX> { static std::ostream &apply(std::ostream &os, const tuple_t &t) { return os; } }; template <class... T> std::ostream &operator<<(std::ostream &os, const std::tuple<T...> &t) { return tuple_os<std::tuple<T...>, std::tuple_size<std::tuple<T...>>::value - 1>::apply(os, t); } template <class Container, typename = decltype(std::begin(std::declval<Container>()))> typename std::enable_if< !std::is_same<typename std::decay<Container>::type, std::string>::value && !std::is_same<typename std::decay<Container>::type, char *>::value, std::ostream &>::type operator<<(std::ostream &os, const Container &cont) { bool head = true; for (auto &&e : cont) head ? head = 0 : (os << ' ', 0), os << e; return os; } } // namespace workspace #line 2 "Library/src/utils/make_vector.hpp" /* * @file make_vector.hpp * @brief Multi-dimensional Vector */ #if __cplusplus >= 201703L #include <tuple> #include <vector> namespace workspace { /* * @brief Make a multi-dimensional vector. * @tparam Tp type of the elements * @tparam N dimension * @tparam S integer type * @param sizes The size of each dimension * @param init The initial value */ template <typename Tp, size_t N, typename S> constexpr auto make_vector(S* sizes, Tp const& init = Tp()) { static_assert(std::is_convertible_v<S, size_t>); if constexpr (N) return std::vector(*sizes, make_vector<Tp, N - 1, S>(std::next(sizes), init)); else return init; } /* * @brief Make a multi-dimensional vector. * @param sizes The size of each dimension * @param init The initial value */ template <typename Tp, size_t N, typename S> constexpr auto make_vector(const S (&sizes)[N], Tp const& init = Tp()) { return make_vector<Tp, N, S>((S*)sizes, init); } /* * @brief Make a multi-dimensional vector. * @param sizes The size of each dimension * @param init The initial value */ template <typename Tp, size_t N, typename S, size_t I = 0> constexpr auto make_vector(std::array<S, N> const& sizes, Tp const& init = Tp()) { static_assert(std::is_convertible_v<S, size_t>); if constexpr (I == N) return init; else return std::vector(sizes[I], make_vector<Tp, N, S, I + 1>(sizes, init)); } /* * @brief Make a multi-dimensional vector. * @param sizes The size of each dimension * @param init The initial value */ template <typename Tp, size_t N = SIZE_MAX, size_t I = 0, class... Args> constexpr auto make_vector(std::tuple<Args...> const& sizes, Tp const& init = Tp()) { using tuple_type = std::tuple<Args...>; if constexpr (I == std::tuple_size_v<tuple_type> || I == N) return init; else { static_assert( std::is_convertible_v<std::tuple_element_t<I, tuple_type>, size_t>); return std::vector(std::get<I>(sizes), make_vector<Tp, N, I + 1>(sizes, init)); } } /* * @brief Make a multi-dimensional vector. * @param sizes The size of each dimension * @param init The initial value */ template <typename Tp, class Fst, class Snd> constexpr auto make_vector(std::pair<Fst, Snd> const& sizes, Tp const& init = Tp()) { static_assert(std::is_convertible_v<Fst, size_t>); static_assert(std::is_convertible_v<Snd, size_t>); return make_vector({(size_t)sizes.first, (size_t)sizes.second}, init); } } // namespace workspace #endif #line 3 "Library/src/utils/random_number_generator.hpp" template <typename num_type> class random_number_generator { typename std::conditional<std::is_integral<num_type>::value, std::uniform_int_distribution<num_type>, std::uniform_real_distribution<num_type>>::type unif; std::mt19937 engine; public: random_number_generator(num_type min = std::numeric_limits<num_type>::min(), num_type max = std::numeric_limits<num_type>::max()) : unif(min, max), engine(std::random_device{}()) {} num_type min() const { return unif.min(); } num_type max() const { return unif.max(); } // generate a random number in [min(), max()]. num_type operator()() { return unif(engine); } }; #line 2 "Library/src/utils/round_div.hpp" /* * @file round_div.hpp * @brief Round Integer Division */ #line 9 "Library/src/utils/round_div.hpp" #line 11 "Library/src/utils/round_div.hpp" namespace workspace { /* * @fn floor_div * @brief floor of fraction. * @param x the numerator * @param y the denominator * @return maximum integer z s.t. z <= x / y * @note y must be nonzero. */ template <typename T1, typename T2> constexpr typename std::enable_if<(is_integral_ext<T1>::value && is_integral_ext<T2>::value), typename std::common_type<T1, T2>::type>::type floor_div(T1 x, T2 y) { assert(y != 0); if (y < 0) x = -x, y = -y; return x < 0 ? (x - y + 1) / y : x / y; } /* * @fn ceil_div * @brief ceil of fraction. * @param x the numerator * @param y the denominator * @return minimum integer z s.t. z >= x / y * @note y must be nonzero. */ template <typename T1, typename T2> constexpr typename std::enable_if<(is_integral_ext<T1>::value && is_integral_ext<T2>::value), typename std::common_type<T1, T2>::type>::type ceil_div(T1 x, T2 y) { assert(y != 0); if (y < 0) x = -x, y = -y; return x < 0 ? x / y : (x + y - 1) / y; } } // namespace workspace #line 4 "Library/src/utils/trinary_search.hpp" // trinary search on discrete range. template <class iter_type, class comp_type> iter_type trinary(iter_type first, iter_type last, comp_type comp) { assert(first < last); intmax_t dist(last - first); while(dist > 2) { iter_type left(first + dist / 3), right(first + dist * 2 / 3); if(comp(left, right)) last = right, dist = dist * 2 / 3; else first = left, dist -= dist / 3; } if(dist > 1 && comp(first + 1, first)) ++first; return first; } // trinary search on real numbers. template <class comp_type> long double trinary(long double first, long double last, const long double eps, comp_type comp) { assert(first < last); while(last - first > eps) { long double left{(first * 2 + last) / 3}, right{(first + last * 2) / 3}; if(comp(left, right)) last = right; else first = left; } return first; } #line 2 "Library/src/utils/wrapper.hpp" template <class Container> class reversed { Container &ref, copy; public: constexpr reversed(Container &ref) : ref(ref) {} constexpr reversed(Container &&ref = Container()) : ref(copy), copy(ref) {} constexpr auto begin() const { return ref.rbegin(); } constexpr auto end() const { return ref.rend(); } constexpr operator Container() const { return ref; } }; #line 12 "Library/yu2.cc" int main() { workspace::iterate_main(); } unsigned workspace::case_number() { // return -1; // unspecified // int t; std::cin >> t; std::cin.ignore(); return t; // given return 1; } #line 3 "Library/src/data_structure/convex_hull_trick/Li_Chao_tree.hpp" template <class T = long long, class Comp = std::less<T>, T infty = std::numeric_limits<T>::max()> class Li_Chao_tree { struct line { T slop = 0, icpt = infty; line *lch = nullptr, *rch = nullptr; ~line() { delete lch; delete rch; } line *swap(line &rhs) { std::swap(slop, rhs.slop); std::swap(icpt, rhs.icpt); return this; } T eval(const T x) const { return slop * x + icpt; } }; // struct line T lower, upper, eps; Comp comp; line *root = nullptr; // // insert a line for the interval [l, r). line *insert(line *const p, const T l, const T r, line ln) { if(!p) return new line(ln); bool lcmp = comp(ln.eval(l), p->eval(l)); bool rcmp = comp(ln.eval(r - eps), p->eval(r - eps)); if(lcmp == rcmp) return lcmp ? p->swap(ln) : p; if(r - l <= eps) return p; T mid = (l + r) / 2; if(comp(ln.eval(mid), p->eval(mid))) { p->swap(ln); lcmp = !lcmp; } if(lcmp) p->lch = insert(p->lch, l, mid, ln); else p->rch = insert(p->rch, mid, r, ln); return p; } // // insert a segment for the interval [l, r). line *insert(line *const p, const T l, const T r, line ln, const T s, const T t) { if(t - eps < l || r - eps < s) return p; T mid = (l + r) / 2; if(l < s or t < r) { line *np = p ? p : new line; np->lch = insert(np->lch, l, mid, ln, s, t); np->rch = insert(np->rch, mid, r, ln, s, t); return np; } if(!p) return new line(ln); bool lcmp = comp(ln.eval(l), p->eval(l)); bool rcmp = comp(ln.eval(r - eps), p->eval(r - eps)); if(lcmp == rcmp) return lcmp ? p->swap(ln) : p; if(r - l <= eps) return p; if(comp(ln.eval(mid), p->eval(mid))) { p->swap(ln); lcmp = !lcmp; } if(lcmp) p->lch = insert(p->lch, l, mid, ln, s, t); else p->rch = insert(p->rch, mid, r, ln, s, t); return p; } public: // domain set to be the interval [lower, upper). Li_Chao_tree(const T lower, const T upper, const T eps = 1, Comp comp = Comp()) : lower(lower), upper(upper), eps(eps), comp(comp) {} ~Li_Chao_tree() { delete root; } bool empty() const { return !root; } // insert a line whose slope is p and inception is q. void insert(const T p, const T q) { root = insert(root, lower, upper, line{p, q}); } // insert a line(segment) whose slope is p, inception is q, // and domain is the interval [s, t). void insert(const T p, const T q, const T s, const T t) { if(s < t) root = insert(root, lower, upper, line{p, q}, s, t); } T get(const T x) const { line *p = root; T l = lower, r = upper; T res = infty; while(p) { T nval = p->eval(x); if(comp(nval, res)) res = nval; if(r - l <= eps) return res; T mid = (l + r) / 2; if(x < mid) { p = p->lch; r = mid; } else { p = p->rch; l = mid; } } return res; } }; // class Li_Chao_tree #line 4 "Library/src/data_structure/convex_hull_trick/monotone.hpp" template <class T> class lower_convex_monotone { struct line { T slop, icpt; T eval(const T x) const { return slop * x + icpt; } }; std::vector<line> lines; typename std::vector<line>::iterator lp, rp; void realloc() { if (rp != lines.end()) return; std::vector<line> copy((rp - lp) * 2 + 1); copy.swap(lines); rp = copy(lp, rp, lines.begin()); lp = lines.begin(); } public: lower_convex_monotone() : lines(2), lp(lines.begin()), rp(lp) {} bool empty() const { return lp == rp; } void clear() { rp = lp = lines.begin(); } void add(const T a, const T b) { while (rp - lp > 1) { auto [a1, b1] = *(rp - 1); auto [a2, b2] = *(rp - 2); if ((b - b1) * (a2 - a) > (b - b2) * (a1 - a)) break; --rp; } if (rp == lp) rp = lp = lines.begin(); realloc(); *rp++ = {a, b}; } T get(const T x) { assert(!empty()); while (rp - lp > 1 && lp->eval(x) > (lp + 1)->eval(x)) ++lp; return lp->eval(x); } }; // class lower_convex_monotone #line 4 "Library/src/data_structure/deque_aggregation.hpp" // implementation with dynamic memory allocation. template <class monoid> class deque_aggregation { template <bool left_operand_added> class stack_aggregation { friend deque_aggregation; struct data { monoid value, acc; }; size_t capacity; data *stack, *end, *itr; bool top_referred; void recalc() { if(top_referred) { assert(itr != stack); top_referred = false; monoid top_val{top().value}; pop(); push(top_val); } } public: stack_aggregation() : capacity(1), stack(new data[1]), end(std::next(stack)), itr(stack), top_referred() {} ~stack_aggregation() { delete[] stack; } bool empty() const { return stack == itr; } size_t size() const { return itr - stack; } // copy of the element at the index. data operator[](size_t index) const { assert(index < size()); recalc(); return stack[index]; } // reference to the last element data &top() { assert(itr != stack); top_referred = true; return *std::prev(itr); } void pop() { assert(itr != stack); --itr; top_referred = false; } void push(const monoid &mono) { recalc(); if(itr == end) { data *tmp = new data[capacity << 1]; std::swap(stack, tmp); end = (itr = std::copy(tmp, tmp + capacity, stack)) + capacity; capacity <<= 1; delete[] tmp; } if(left_operand_added) *itr = data{mono, mono + fold()}; else *itr = data{mono, fold() + mono}; ++itr; } monoid fold() { if(itr == stack) return monoid(); recalc(); return std::prev(itr)->acc; } }; // class stack_aggregation stack_aggregation<true> left; stack_aggregation<false> right; void balance_to_left() { if(!left.empty() || right.empty()) return; left.recalc(); right.recalc(); size_t mid = (right.size() + 1) >> 1; auto *itr = right.stack + mid; do { left.push((--itr)->value); } while(itr != right.stack); monoid acc; for(auto *p = right.stack + mid; p != right.itr; ++p, ++itr) { *itr = {p->value, acc = acc + p->value}; } right.itr = itr; } void balance_to_right() { if(!right.empty() || left.empty()) return; left.recalc(); right.recalc(); size_t mid = (left.size() + 1) >> 1; auto *itr = left.stack + mid; do { right.push((--itr)->value); } while(itr != left.stack); monoid acc; for(auto *p = left.stack + mid; p != left.itr; ++p, ++itr) { *itr = {p->value, acc = p->value + acc}; } left.itr = itr; } public: bool empty() const { return left.empty() && right.empty(); } size_t size() const { return left.size() + right.size(); } // reference to the first element. monoid &front() { assert(!empty()); balance_to_left(); return left.top().value; } // reference to the last element. monoid &back() { assert(!empty()); balance_to_right(); return right.top().value; } // copy of the element at the index. monoid operator[](size_t index) const { assert(index < left.size() + right.size()); return index < left.size() ? left[index].value : right[index - left.size()].value; } void push_front(const monoid &mono) { left.push(mono); } void push_back(const monoid &mono) { right.push(mono); } void pop_front() { assert(!empty()); balance_to_left(); left.pop(); } void pop_back() { assert(!empty()); balance_to_right(); right.pop(); } monoid fold() { return left.fold() + right.fold(); } }; // class deque_aggregation #line 2 "Library/src/data_structure/Mo.hpp" /* * @file Mo.hpp * @brief Mo's Algorithm */ #line 13 "Library/src/data_structure/Mo.hpp" namespace workspace { /* * @class Mo * @brief process queries about contiguous subarray * @tparam Push_back * @tparam Pop_back * @tparam Push_front Push_back as default * @tparam Pop_front Pop_back as default */ template <class Push_back, class Pop_back, class Push_front = Push_back, class Pop_front = Pop_back> class Mo { Push_front push_front; Pop_front pop_front; Push_back push_back; Pop_back pop_back; std::vector<size_t> lft, rgt, ord; std::vector<size_t>::iterator itr; size_t lpos, rpos; public: /* * @param push_back * @param pop_back */ Mo(Push_back push_back, Pop_back pop_back) : Mo(push_back, pop_back, push_back, pop_back) {} /* * @param push_front * @param pop_front * @param push_back * @param pop_back */ Mo(Push_front push_front, Pop_front pop_front, Push_back push_back, Pop_back pop_back) : push_front(push_front), pop_front(pop_front), push_back(push_back), pop_back(pop_back), lpos(), rpos() {} /* * @return number of queries */ size_t size() const { return lft.size(); } /* * @brief add query * @param l left end, inclusive * @param r right end, exclusive */ void set(size_t l, size_t r) { assert(!(r < l)); lft.emplace_back(l), rgt.emplace_back(r); } /* * @brief sort queries */ void make() { assert(size()); ord.resize(size()); iota(ord.begin(), ord.end(), 0); const size_t width = sqrt(*max_element(rgt.begin(), rgt.end())); std::sort(ord.begin(), ord.end(), [&](size_t x, size_t y) { if (lft[x] / width != lft[y] / width) return lft[x] < lft[y]; return rgt[x] < rgt[y]; }); itr = ord.begin(); } /* * @brief process one query * @return index of query */ size_t process() { if (itr == ord.end()) return ord.size(); const size_t id = *itr++, l = lft[id], r = rgt[id]; while (lpos > l) push_front(--lpos); while (rpos < r) push_back(rpos++); while (lpos < l) pop_front(lpos++); while (rpos > r) pop_back(--rpos); return id; } }; } // namespace workspace #line 5 "Library/src/data_structure/segment_tree/basic.hpp" #line 2 "Library/algebra/system/monoid.hpp" /* * @file monoid.hpp * @brief Monoid */ #line 9 "Library/algebra/system/monoid.hpp" namespace workspace { template <class T, class E = T> struct min_monoid { using value_type = T; static T min, max; T value; min_monoid() : value(max) {} min_monoid(const T &value) : value(value) {} operator T() const { return value; } min_monoid operator+(const min_monoid &rhs) const { return value < rhs.value ? *this : rhs; } min_monoid operator*(const E &rhs) const; }; template <class T, class E> T min_monoid<T, E>::min = std::numeric_limits<T>::min() / 2; template <class T, class E> T min_monoid<T, E>::max = std::numeric_limits<T>::max() / 2; template <class T, class E = T> struct max_monoid : min_monoid<T, E> { using base = min_monoid<T, E>; using base::min_monoid; max_monoid() : base(base::min) {} max_monoid operator+(const max_monoid &rhs) const { return !(base::value < rhs.value) ? *this : rhs; } max_monoid operator*(const E &rhs) const; }; } // namespace workspace #line 3 "Library/src/data_structure/segment_tree/waitlist.hpp" namespace internal { struct waitlist : std::queue<size_t> { waitlist(size_t n) : in(n) {} bool push(size_t index) { assert(index < in.size()); if (in[index]) return false; emplace(index); return (in[index] = true); } size_t pop() { assert(!empty()); auto index = front(); std::queue<size_t>::pop(); in[index] = false; return index; } private: std::vector<int_least8_t> in; }; } #line 9 "Library/src/data_structure/segment_tree/basic.hpp" template <class Monoid, class Container = std::vector<Monoid>> class segment_tree { static_assert(std::is_same<Monoid, mapped_type<Container>>::value); size_t size_orig, height, size_ext; Container data; internal::waitlist wait; void repair() { while (!wait.empty()) { const size_t index = wait.pop() >> 1; if (index && wait.push(index)) pull(index); } } void pull(const size_t node) { data[node] = data[node << 1] + data[node << 1 | 1]; } template <class Pred> size_t left_partition_subtree(size_t index, const Pred pred, Monoid mono) const { assert(index); while (index < size_ext) { const Monoid tmp = data[(index <<= 1) | 1] + mono; if (pred(tmp)) mono = tmp; else ++index; } return ++index -= size_ext; } template <class Pred> size_t right_partition_subtree(size_t index, const Pred pred, Monoid mono) const { assert(index); while (index < size_ext) { const Monoid tmp = mono + data[index <<= 1]; if (pred(tmp)) ++index, mono = tmp; } return (index -= size_ext) < size_orig ? index : size_orig; } public: using value_type = Monoid; segment_tree(const size_t n = 0) : size_orig{n}, height(n > 1 ? 32 - __builtin_clz(n - 1) : 0), size_ext{1u << height}, data(size_ext << 1), wait(size_ext << 1) {} segment_tree(const size_t n, const Monoid &init) : segment_tree(n) { std::fill(std::next(std::begin(data), size_ext), std::end(data), init); for (size_t i{size_ext}; --i;) pull(i); } template <class iter_type, class value_type = typename std::iterator_traits< iter_type>::value_type> segment_tree(iter_type first, iter_type last) : size_orig(std::distance(first, last)), height(size_orig > 1 ? 32 - __builtin_clz(size_orig - 1) : 0), size_ext{1u << height}, data(size_ext << 1), wait(size_ext << 1) { static_assert(std::is_constructible<Monoid, value_type>::value, "Monoid(iter_type::value_type) is not constructible."); for (auto iter{std::next(std::begin(data), size_ext)}; iter != std::end(data) && first != last; ++iter, ++first) *iter = Monoid{*first}; for (size_t i{size_ext}; --i;) pull(i); } template <class Cont, typename = typename Cont::value_type> segment_tree(const Cont &cont) : segment_tree(std::begin(cont), std::end(cont)) {} size_t size() const { return size_orig; } size_t capacity() const { return size_ext; } // reference to the element at the index. Monoid &operator[](size_t index) { assert(index < size_orig); wait.push(index |= size_ext); return data[index]; } // const reference to the element at the index. const Monoid &operator[](size_t index) const { assert(index < size_orig); return data[index |= size_orig]; } Monoid fold(size_t first, size_t last) { assert(last <= size_orig); repair(); Monoid leftval{}, rightval{}; first += size_ext, last += size_ext; while (first < last) { if (first & 1) leftval = leftval + data[first++]; if (last & 1) rightval = data[--last] + rightval; first >>= 1, last >>= 1; } return leftval + rightval; } Monoid fold() { return fold(0, size_orig); } template <class Pred> size_t left_partition(size_t right, Pred pred) { assert(right <= size_orig); repair(); right += size_ext; Monoid mono{}; for (size_t left{size_ext}; left != right; left >>= 1, right >>= 1) { if ((left & 1) != (right & 1)) { const Monoid tmp = data[--right] + mono; if (!pred(tmp)) return left_partition_subtree(right, pred, mono); mono = tmp; } } return 0; } template <class Pred> size_t right_partition(size_t left, Pred pred) { assert(left <= size_orig); repair(); left += size_ext; Monoid mono{}; for (size_t right{size_ext << 1}; left != right; left >>= 1, right >>= 1) { if ((left & 1) != (right & 1)) { const Monoid tmp = mono + data[left]; if (!pred(tmp)) return right_partition_subtree(left, pred, mono); mono = tmp; ++left; } } return size_orig; } }; // class segment_tree #line 5 "Library/src/data_structure/segment_tree/lazy.hpp" #line 9 "Library/src/data_structure/segment_tree/lazy.hpp" template <class Monoid, class Endomorphism, class Monoid_container = std::vector<Monoid>, class Endomorphism_container = std::vector<Endomorphism>> class lazy_segment_tree { static_assert(std::is_same<Monoid, mapped_type<Monoid_container>>::value); static_assert( std::is_same<Endomorphism, mapped_type<Endomorphism_container>>::value); static_assert(std::is_same<Monoid, decltype(Monoid{} + Monoid{})>::value, "\'Monoid\' has no proper binary operator+."); static_assert(std::is_same<Endomorphism, decltype(Endomorphism{} * Endomorphism{})>::value, "\'Endomorphism\' has no proper binary operator*."); static_assert( std::is_same<Monoid, decltype(Monoid{} * Endomorphism{})>::value, "\'Endomorphism\' is not applicable to \'Monoid\'."); size_t size_orig, height, size_ext; Monoid_container data; Endomorphism_container lazy; internal::waitlist wait; void repair() { while (!wait.empty()) { const size_t index = wait.pop() >> 1; if (index && wait.push(index)) pull(index); } } void apply(size_t node, const Endomorphism &endo) { data[node] = data[node] * endo; if (node < size_ext) lazy[node] = lazy[node] * endo; } void push(size_t node) { if (!(node < size_ext)) return; apply(node << 1, lazy[node]); apply(node << 1 | 1, lazy[node]); lazy[node] = Endomorphism{}; } void pull(size_t node) { data[node] = data[node << 1] + data[node << 1 | 1]; } template <class Pred> size_t left_partition_subtree(size_t node, Pred pred, Monoid mono) { assert(node); while (node < size_ext) { push(node); const Monoid &tmp = data[(node <<= 1) | 1] + mono; if (pred(tmp)) mono = tmp; else ++node; } return ++node -= size_ext; } template <class Pred> size_t right_partition_subtree(size_t node, Pred pred, Monoid mono) { assert(node); while (node < size_ext) { push(node); const Monoid &tmp = mono + data[node <<= 1]; if (pred(tmp)) ++node, mono = tmp; } return (node -= size_ext) < size_orig ? node : size_orig; } public: using value_type = Monoid; lazy_segment_tree(size_t n = 0) : size_orig{n}, height(n > 1 ? 32 - __builtin_clz(n - 1) : 0), size_ext{1u << height}, data(size_ext << 1), lazy(size_ext), wait(size_ext << 1) {} lazy_segment_tree(size_t n, const Monoid &init) : lazy_segment_tree(n) { std::fill(std::next(std::begin(data), size_ext), std::end(data), init); for (size_t i{size_ext}; --i;) pull(i); } template <class iter_type, class value_type = typename std::iterator_traits< iter_type>::value_type> lazy_segment_tree(iter_type first, iter_type last) : size_orig(std::distance(first, last)), height(size_orig > 1 ? 32 - __builtin_clz(size_orig - 1) : 0), size_ext{1u << height}, data(size_ext << 1), lazy(size_ext), wait(size_ext << 1) { static_assert(std::is_constructible<Monoid, value_type>::value, "Monoid(iter_type::value_type) is not constructible."); for (auto iter{std::next(std::begin(data), size_ext)}; iter != std::end(data) && first != last; ++iter, ++first) *iter = Monoid(*first); for (size_t i{size_ext}; --i;) pull(i); } template <class Container, typename = element_type<Container>> lazy_segment_tree(const Container &cont) : lazy_segment_tree(std::begin(cont), std::end(cont)) {} size_t size() const { return size_orig; } size_t capacity() const { return size_ext; } Monoid &operator[](size_t index) { assert(index < size_orig); index |= size_ext; wait.push(index); for (size_t i = height; i; --i) push(index >> i); return data[index]; } void update(size_t index, const Endomorphism &endo) { update(index, index + 1, endo); } void update(size_t first, size_t last, const Endomorphism &endo) { assert(last <= size_orig); repair(); if (first >= last) return; first += size_ext, last += size_ext - 1; for (size_t i = height; i; --i) push(first >> i), push(last >> i); for (size_t l = first, r = last + 1; last; l >>= 1, r >>= 1) { if (l < r) { if (l & 1) apply(l++, endo); if (r & 1) apply(--r, endo); } if (first >>= 1, last >>= 1) { pull(first), pull(last); } } } Monoid fold() { return fold(0, size_orig); } Monoid fold(size_t first, size_t last) { assert(last <= size_orig); repair(); if (first >= last) return Monoid{}; first += size_ext, last += size_ext - 1; Monoid left_val{}, right_val{}; for (size_t l = first, r = last + 1; last; l >>= 1, r >>= 1) { if (l < r) { if (l & 1) left_val = left_val + data[l++]; if (r & 1) right_val = data[--r] + right_val; } if (first >>= 1, last >>= 1) { left_val = left_val * lazy[first]; right_val = right_val * lazy[last]; } } return left_val + right_val; } template <class Pred> size_t left_partition(size_t right, Pred pred) { assert(right <= size_orig); repair(); right += size_ext - 1; for (size_t i{height}; i; --i) push(right >> i); ++right; Monoid mono{}; for (size_t left{size_ext}; left != right; left >>= 1, right >>= 1) { if ((left & 1) != (right & 1)) { const Monoid &tmp = data[--right] + mono; if (!pred(tmp)) return left_partition_subtree(right, pred, mono); mono = tmp; } } return 0; } template <class Pred> size_t right_partition(size_t left, Pred pred) { assert(left <= size_orig); repair(); left += size_ext; for (size_t i{height}; i; --i) push(left >> i); Monoid mono{}; for (size_t right{size_ext << 1}; left != right; left >>= 1, right >>= 1) { if ((left & 1) != (right & 1)) { const Monoid &tmp = mono + data[left]; if (!pred(tmp)) return right_partition_subtree(left, pred, mono); mono = tmp; ++left; } } return size_orig; } }; // class lazy_segment_tree #line 2 "Library/src/data_structure/union_find/basic.hpp" /* * @file basic.hpp * @brief Basic Union-Find */ #line 11 "Library/src/data_structure/union_find/basic.hpp" namespace workspace { template <typename Tp> struct union_find { protected: using signed_t = typename std::make_signed<Tp>::type; using unsigned_t = typename std::make_unsigned<Tp>::type; std::vector<signed_t> link; public: /* * @param n The number of nodes. */ union_find(Tp n = 0) : link(n, 1) {} /* * @fn find * @param x A node. * @return The representative of the group. */ virtual unsigned_t find(unsigned_t x) { assert(x < size()); return link[x] > 0 ? x : -(link[x] = -(signed_t)find(-link[x])); } /* * @fn size * @return The number of nodes. */ unsigned_t size() const { return link.size(); } /* * @fn size * @param x A node. * @return The number of nodes in the group. */ virtual unsigned_t size(unsigned_t x) { assert(x < size()); return link[find(x)]; } /* * @fn same * @param x 1st node. * @param y 2nd node. * @return Whether or not the two nodes belong to the same group. */ bool same(unsigned_t x, unsigned_t y) { assert(x < size()); assert(y < size()); return find(x) == find(y); } /* * @fn unite * @param x 1st node. * @param y 2nd node. * @return Whether or not the two groups were merged anew. */ virtual bool unite(unsigned_t x, unsigned_t y) { assert(x < size()), x = find(x); assert(y < size()), y = find(y); if (x == y) return false; if (link[x] < link[y]) std::swap(x, y); link[x] += link[y]; link[y] = -(signed_t)x; return true; } }; } // namespace workspace #line 2 "Library/src/data_structure/union_find/bipartite.hpp" /* * @file bipartite.hpp * @brief Bipartite Union-Find */ #line 9 "Library/src/data_structure/union_find/bipartite.hpp" namespace workspace { class bipartite_union_find : public union_find<uint_least64_t> { using base = union_find<uint_least64_t>; using base::union_find; constexpr static unsigned_t sgnb = unsigned_t(1) << 32, mask = sgnb - 1, ubs = ~unsigned_t(0) ^ mask; public: unsigned_t find(unsigned_t x) override { assert(x < base::size()); if (link[x] > 0) return x; const auto p = -link[x] & mask, r = find(p); if (r != p) link[x] = -(link[x] ^ p ^ link[p]); return r; } bool diff(unsigned_t x) { assert(x < base::size()), find(x); return link[x] > 0 ? 0 : link[x] >> 32 & 1; } // bool diff(unsigned_t x, unsigned_t y) {} unsigned_t size(size_t x, bool neq) { assert(x < base::size()), x = find(x); return neq ? link[x] >> 32 : link[x] & mask; } unsigned_t size(size_t x) override { assert(x < base::size()), x = find(x); return (link[x] >> 32) + (link[x] & mask); } /* * @fn unite * @param x 1st node. * @param y 2nd node. * @param flip * @return Whether or not the relation is consistent. */ bool unite(size_t x, size_t y, bool flip = true) { assert(x < base::size()), flip ^= diff(x), x = find(x); assert(y < base::size()), flip ^= diff(y), y = find(y); if (x == y) return !flip; if (link[x] < link[y]) std::swap(x, y); link[x] += flip ? (unsigned_t)link[y] << 32 | link[y] >> 32 : link[y]; link[y] = flip ? (mask + 1) ^ -x : -x; return true; } }; } // namespace workspace #line 1 "Library/src/data_structure/union_find/partially_persistent_union_find.hpp" // #line 2 "Partially_persistent_union_find.hpp" // veryfied at https://atcoder.jp/contests/agc002/submissions/9514048 #ifndef Partially_persistent_union_find_hpp #define Partially_persistent_union_find_hpp #include <cstdint> #include <cstddef> #include <numeric> #include <vector> class partially_persistent_union_find { using time_type = uint32_t; struct log_type { time_type time; size_t size; }; const size_t n; std::vector<size_t> parent; std::vector<time_type> last; std::vector<std::vector<log_type>> size_log; time_type clock; public: explicit partially_persistent_union_find(size_t _n) : n(_n), parent(n), last(n, UINT32_MAX), size_log(n, std::vector<log_type>(1, {0, 1})), clock() { std::iota(parent.begin(), parent.end(), 0); } size_t size(size_t x, time_type t = UINT32_MAX) { size_t root = find(x, t); auto __ok{size_log[root].begin()}, __ng{size_log[root].end()}; auto dist = __ng - __ok; while(dist > 1) { auto mid{__ok + (dist >> 1)}; if(mid->time > t) __ng = mid, dist >>= 1; else __ok = mid, ++dist >>= 1; } return __ok->size; } size_t find(size_t x, size_t t = UINT32_MAX) { return last[x] >= t ? x : find(parent[x], t); } bool same(size_t x, size_t y, time_type t = UINT32_MAX) { return find(x, t) == find(y, t); } time_type unite(size_t x, size_t y) { if((x = find(x)) != (y = find(y))) { size_t size_x = size_log[x].back().size; size_t size_y = size_log[y].back().size; if(size_x < size_y) std::swap(x, y), std::swap(size_x, size_y); size_log[x].push_back({clock + 1, size_x + size_y}); parent[y] = x; last[y] = clock; } return ++clock; } }; // class partially_persistent_union_find #endif #line 1 "Library/src/data_structure/union_find/potentialized_union_find.hpp" // #line 2 "potentialized_union_find.hpp" // verified at https://atcoder.jp/contests/abc087/submissions/9511701 #ifndef Potentialized_union_find_hpp #define Potentialized_union_find_hpp #include <cassert> #include <cstddef> #include <vector> template <class Abelian> class potentialized_union_find { size_t n; std::vector<int> link; std::vector<Abelian> diff_weight; public: explicit potentialized_union_find(size_t _n) : n(_n), link(n, -1), diff_weight(n) {} size_t find(const size_t x) { assert(x < n); if(link[x] < 0) return x; const size_t root = find(link[x]); diff_weight[x] += diff_weight[link[x]]; return link[x] = root; } size_t size() const { return n; } size_t size(const size_t x) { return -link[find(x)]; } Abelian weight(size_t x) { return find(x), diff_weight[x]; } Abelian diff(size_t x, size_t y) { return weight(y) - weight(x); } bool same(const size_t x, const size_t y) { return find(x) == find(y); } bool unite(size_t x, size_t y, Abelian w) { w += weight(x) - weight(y); x = find(x), y = find(y); if(x == y) return false; if(link[x] > link[y]) std::swap(x, y), w = -w; link[x] += link[y], link[y] = x; diff_weight[y] = w; return true; } }; // class potentialized_union_find #endif #line 2 "Library/src/data_structure/union_find/unbalanced.hpp" /* * @file unbalanced.hpp * @brief Unbalanced Union-Find */ #line 9 "Library/src/data_structure/union_find/unbalanced.hpp" namespace workspace { class unbalanced_union_find : public union_find<uint_least32_t> { using base = union_find<uint_least32_t>; public: using base::union_find; bool unite(unsigned_t x, unsigned_t y) override { assert(x < size()), x = find(x); assert(y < size()), y = find(y); if (x == y) return false; link[x] += link[y]; link[y] = -(signed_t)x; return true; } }; } // namespace workspace #line 2 "Library/src/modular/inverse.hpp" /* * @file inverse.hpp * @brief Inverse Table */ #line 9 "Library/src/modular/inverse.hpp" #line 2 "Library/src/modular/modint.hpp" /* * @file modint.hpp * @brief Modular Arithmetic */ #line 10 "Library/src/modular/modint.hpp" #line 12 "Library/src/modular/modint.hpp" namespace workspace { namespace internal { /* * @struct modint_base * @brief base of modular arithmetic. * @tparam Mod identifier, which represents modulus if positive */ template <auto Mod> struct modint_base { static_assert(is_integral_ext<decltype(Mod)>::value, "Mod must be integral type."); using mod_type = typename std::conditional<0 < Mod, typename std::add_const<decltype(Mod)>::type, decltype(Mod)>::type; static mod_type mod; using value_type = typename std::decay<mod_type>::type; constexpr operator value_type() const noexcept { return value; } constexpr static modint_base one() noexcept { return 1; } constexpr modint_base() noexcept = default; template <class int_type, typename std::enable_if<is_integral_ext<int_type>::value>::type * = nullptr> constexpr modint_base(int_type n) noexcept : value((n %= mod) < 0 ? mod + n : n) {} constexpr modint_base(bool n) noexcept : modint_base(int(n)) {} constexpr modint_base operator++(int) noexcept { modint_base t{*this}; return operator+=(1), t; } constexpr modint_base operator--(int) noexcept { modint_base t{*this}; return operator-=(1), t; } constexpr modint_base &operator++() noexcept { return operator+=(1); } constexpr modint_base &operator--() noexcept { return operator-=(1); } constexpr modint_base operator-() const noexcept { return value ? mod - value : 0; } constexpr modint_base &operator+=(const modint_base &rhs) noexcept { return (value += rhs.value) < mod ? 0 : value -= mod, *this; } constexpr modint_base &operator-=(const modint_base &rhs) noexcept { return (value += mod - rhs.value) < mod ? 0 : value -= mod, *this; } constexpr modint_base &operator*=(const modint_base &rhs) noexcept { return value = (typename multiplicable_uint<value_type>::type)value * rhs.value % mod, *this; } constexpr modint_base &operator/=(const modint_base &rhs) noexcept { return operator*=(rhs.inverse()); } template <class int_type> constexpr typename std::enable_if<is_integral_ext<int_type>::value, modint_base>::type operator+(const int_type &rhs) const noexcept { return modint_base{*this} += rhs; } constexpr modint_base operator+(const modint_base &rhs) const noexcept { return modint_base{*this} += rhs; } template <class int_type> constexpr typename std::enable_if<is_integral_ext<int_type>::value, modint_base>::type operator-(const int_type &rhs) const noexcept { return modint_base{*this} -= rhs; } constexpr modint_base operator-(const modint_base &rhs) const noexcept { return modint_base{*this} -= rhs; } template <class int_type> constexpr typename std::enable_if<is_integral_ext<int_type>::value, modint_base>::type operator*(const int_type &rhs) const noexcept { return modint_base{*this} *= rhs; } constexpr modint_base operator*(const modint_base &rhs) const noexcept { return modint_base{*this} *= rhs; } template <class int_type> constexpr typename std::enable_if<is_integral_ext<int_type>::value, modint_base>::type operator/(const int_type &rhs) const noexcept { return modint_base{*this} /= rhs; } constexpr modint_base operator/(const modint_base &rhs) const noexcept { return modint_base{*this} /= rhs; } template <class int_type> constexpr friend typename std::enable_if<is_integral_ext<int_type>::value, modint_base>::type operator+(const int_type &lhs, const modint_base &rhs) noexcept { return modint_base(lhs) + rhs; } template <class int_type> constexpr friend typename std::enable_if<is_integral_ext<int_type>::value, modint_base>::type operator-(const int_type &lhs, const modint_base &rhs) noexcept { return modint_base(lhs) - rhs; } template <class int_type> constexpr friend typename std::enable_if<is_integral_ext<int_type>::value, modint_base>::type operator*(const int_type &lhs, const modint_base &rhs) noexcept { return modint_base(lhs) * rhs; } template <class int_type> constexpr friend typename std::enable_if<is_integral_ext<int_type>::value, modint_base>::type operator/(const int_type &lhs, const modint_base &rhs) noexcept { return modint_base(lhs) / rhs; } constexpr modint_base inverse() const noexcept { assert(value); value_type a{mod}, b{value}, u{}, v{1}, t{}; while (b) t = a / b, a ^= b ^= (a -= t * b) ^= b, u ^= v ^= (u -= t * v) ^= v; return {u}; } template <class int_type> constexpr typename std::enable_if<is_integral_ext<int_type>::value, modint_base>::type power(int_type e) noexcept { return pow(*this, e); } template <class int_type> friend constexpr typename std::enable_if<is_integral_ext<int_type>::value, modint_base>::type pow(modint_base b, int_type e) noexcept { modint_base res{1}; for (e < 0 ? b = b.inverse(), e = -e : 0; e; e >>= 1, b *= b) if (e & 1) res *= b; return res; } friend std::ostream &operator<<(std::ostream &os, const modint_base &rhs) noexcept { return os << rhs.value; } friend std::istream &operator>>(std::istream &is, modint_base &rhs) noexcept { intmax_t value; rhs = (is >> value, value); return is; } protected: value_type value = 0; }; template <auto Mod> typename modint_base<Mod>::mod_type modint_base<Mod>::mod = Mod; } // namespace internal /* * @typedef modint * @brief modular arithmetic. * @tparam Mod modulus */ template <auto Mod, typename std::enable_if<(Mod > 0)>::type * = nullptr> using modint = internal::modint_base<Mod>; /* * @typedef modint_runtime * @brief runtime modular arithmetic. * @tparam type_id uniquely assigned */ template <unsigned type_id = 0> using modint_runtime = internal::modint_base<-(signed)type_id>; // #define modint_newtype modint_runtime<__COUNTER__> } // namespace workspace #line 11 "Library/src/modular/inverse.hpp" namespace workspace { // Modulus must be prime. template <class Modint> struct inverse_table { static_assert(std::is_same<std::nullptr_t, decltype((void *)Modint::mod, nullptr)>::value); using value_type = Modint; constexpr value_type operator()(int n) const { constexpr int_fast64_t mod = value_type::mod; assert(n %= mod); if (n < 0) n += mod; if (inv.empty()) inv = {1, mod != 1}; for (int m(inv.size()); m <= n; ++m) inv.emplace_back(mod / m * -inv[mod % m]); return inv[n]; } private: static std::vector<value_type> inv; }; template <class Modint> std::vector<Modint> inverse_table<Modint>::inv; } // namespace workspace #line 23 "Library/yu2.cc" namespace workspace { using mint = modint<998244353>; void main() { // start here! int n; cin >> n; vector<int> a(n); cin >> a; const auto mx = a.back(); reverse(begin(a), end(a)); mint ans; for (auto d = 1; d < mx; ++d) { // maxdiff <= d if (d < a[0] - a[1]) continue; segment_tree<mint> z(n); bool fail = false; z[0] = 1; for (auto i = 2, j = 0; i < n; ++i) { while (a[i] + d < a[j]) ++j; if (i == j) { fail = true; break; } z[i - 1] = z.fold(j, i - 1); } if (!fail) ans += z.fold(); } cout << mx * mint(2).power(n - 1) - ans * 2 << eol; } } // namespace workspace