結果
| 問題 |
No.215 素数サイコロと合成数サイコロ (3-Hard)
|
| コンテスト | |
| ユーザー |
beet
|
| 提出日時 | 2020-11-22 15:52:40 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 2,208 ms / 4,000 ms |
| コード長 | 13,484 bytes |
| コンパイル時間 | 3,794 ms |
| コンパイル使用メモリ | 226,912 KB |
| 最終ジャッジ日時 | 2025-01-16 04:23:57 |
|
ジャッジサーバーID (参考情報) |
judge4 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 2 |
ソースコード
#ifndef call_from_test
#include <bits/stdc++.h>
using namespace std;
#endif
#define call_from_test
#ifndef call_from_test
#include <bits/stdc++.h>
using namespace std;
#endif
//BEGIN CUT HERE
template<typename M_>
class Enumeration{
using M = M_;
protected:
static vector<M> fact,finv,invs;
public:
static void init(int n){
n=min<decltype(M::mod)>(n,M::mod-1);
int m=fact.size();
if(n<m) return;
fact.resize(n+1,1);
finv.resize(n+1,1);
invs.resize(n+1,1);
if(m==0) m=1;
for(int i=m;i<=n;i++) fact[i]=fact[i-1]*M(i);
finv[n]=M(1)/fact[n];
for(int i=n;i>=m;i--) finv[i-1]=finv[i]*M(i);
for(int i=m;i<=n;i++) invs[i]=finv[i]*fact[i-1];
}
static M Fact(int n){
init(n);
return fact[n];
}
static M Finv(int n){
init(n);
return finv[n];
}
static M Invs(int n){
init(n);
return invs[n];
}
static M C(int n,int k){
if(n<k or k<0) return M(0);
init(n);
return fact[n]*finv[n-k]*finv[k];
}
static M P(int n,int k){
if(n<k or k<0) return M(0);
init(n);
return fact[n]*finv[n-k];
}
// put n identical balls into k distinct boxes
static M H(int n,int k){
if(n<0 or k<0) return M(0);
if(!n and !k) return M(1);
init(n+k);
return C(n+k-1,n);
}
};
template<typename M>
vector<M> Enumeration<M>::fact=vector<M>();
template<typename M>
vector<M> Enumeration<M>::finv=vector<M>();
template<typename M>
vector<M> Enumeration<M>::invs=vector<M>();
//END CUT HERE
#ifndef call_from_test
//INSERT ABOVE HERE
signed main(){
return 0;
}
#endif
#ifndef call_from_test
#include <bits/stdc++.h>
using namespace std;
#define call_from_test
#include "../combinatorics/enumeration.cpp"
#undef call_from_test
#endif
// http://beet-aizu.hatenablog.com/entry/2019/09/27/224701
//BEGIN CUT HERE
template<typename M_>
struct FormalPowerSeries : Enumeration<M_> {
using M = M_;
using super = Enumeration<M>;
using super::fact;
using super::finv;
using super::invs;
using Poly = vector<M>;
using Conv = function<Poly(Poly, Poly)>;
Conv conv;
FormalPowerSeries(Conv conv):conv(conv){}
Poly pre(const Poly &as,int deg){
return Poly(as.begin(),as.begin()+min((int)as.size(),deg));
}
Poly add(Poly as,Poly bs){
int sz=max(as.size(),bs.size());
Poly cs(sz,M(0));
for(int i=0;i<(int)as.size();i++) cs[i]+=as[i];
for(int i=0;i<(int)bs.size();i++) cs[i]+=bs[i];
return cs;
}
Poly sub(Poly as,Poly bs){
int sz=max(as.size(),bs.size());
Poly cs(sz,M(0));
for(int i=0;i<(int)as.size();i++) cs[i]+=as[i];
for(int i=0;i<(int)bs.size();i++) cs[i]-=bs[i];
return cs;
}
Poly mul(Poly as,Poly bs){
return conv(as,bs);
}
Poly mul(Poly as,M k){
for(auto &a:as) a*=k;
return as;
}
// F(0) must not be 0
Poly inv(Poly as,int deg);
// not zero
Poly div(Poly as,Poly bs);
// not zero
Poly mod(Poly as,Poly bs);
// F(0) must be 1
Poly sqrt(Poly as,int deg);
Poly diff(Poly as);
Poly integral(Poly as);
// F(0) must be 1
Poly log(Poly as,int deg);
// F(0) must be 0
Poly exp(Poly as,int deg);
// not zero
Poly pow(Poly as,long long k,int deg);
// x <- x + c
Poly shift(Poly as,M c);
};
//END CUT HERE
#ifndef call_from_test
//INSERT ABOVE HERE
signed main(){
return 0;
}
#endif
#ifndef call_from_test
#include <bits/stdc++.h>
using namespace std;
#endif
//BEGIN CUT HERE
// construct a charasteristic equation from sequence
// return a monic polynomial in O(n^2)
template<typename T>
vector<T> berlekamp_massey(vector<T> &as){
using Poly = vector<T>;
int n=as.size();
Poly bs({-T(1)}),cs({-T(1)});
T y(1);
for(int ed=1;ed<=n;ed++){
int l=cs.size(),m=bs.size();
T x(0);
for(int i=0;i<l;i++) x+=cs[i]*as[ed-l+i];
bs.emplace_back(0);
m++;
if(x==T(0)) continue;
T freq=x/y;
if(m<=l){
for(int i=0;i<m;i++)
cs[l-1-i]-=freq*bs[m-1-i];
continue;
}
auto ts=cs;
cs.insert(cs.begin(),m-l,T(0));
for(int i=0;i<m;i++) cs[m-1-i]-=freq*bs[m-1-i];
bs=ts;
y=x;
}
for(auto &c:cs) c/=cs.back();
return cs;
}
//END CUT HERE
#ifndef call_from_test
signed main(){
return 0;
}
#endif
#undef call_from_test
//BEGIN CUT HERE
template<typename M>
struct Sequence : FormalPowerSeries<M>{
using FormalPowerSeries<M>::FormalPowerSeries;
using Poly = vector<M>;
struct Calculator{
const Poly as,cs;
Sequence* seq;
Calculator(const Poly as_,const Poly cs_,Sequence *seq_):
as(as_),cs(cs_),seq(seq_){}
M operator()(long long n){
Poly rs({M(1)}),ts({M(0),M(1)});
n--;
while(n){
if(n&1) rs=seq->mod(seq->mul(rs,ts),cs);
ts=seq->mod(seq->mul(ts,ts),cs);
n>>=1;
}
M res(0);
rs.resize(cs.size(),M(0));
for(int i=0;i<(int)cs.size();i++) res+=as[i]*rs[i];
return res;
}
};
Calculator build(vector<M> as){
return Calculator(as,berlekamp_massey(as),this);
}
};
//END CUT HERE
#ifndef call_from_test
//INSERT ABOVE HERE
#define call_from_test
#ifndef call_from_test
#include <bits/stdc++.h>
using namespace std;
#endif
//BEGIN CUT HERE
template<typename T, T MOD = 1000000007>
struct Mint{
static constexpr T mod = MOD;
T v;
Mint():v(0){}
Mint(signed v):v(v){}
Mint(long long t){v=t%MOD;if(v<0) v+=MOD;}
Mint pow(long long k){
Mint res(1),tmp(v);
while(k){
if(k&1) res*=tmp;
tmp*=tmp;
k>>=1;
}
return res;
}
static Mint add_identity(){return Mint(0);}
static Mint mul_identity(){return Mint(1);}
Mint inv(){return pow(MOD-2);}
Mint& operator+=(Mint a){v+=a.v;if(v>=MOD)v-=MOD;return *this;}
Mint& operator-=(Mint a){v+=MOD-a.v;if(v>=MOD)v-=MOD;return *this;}
Mint& operator*=(Mint a){v=1LL*v*a.v%MOD;return *this;}
Mint& operator/=(Mint a){return (*this)*=a.inv();}
Mint operator+(Mint a) const{return Mint(v)+=a;}
Mint operator-(Mint a) const{return Mint(v)-=a;}
Mint operator*(Mint a) const{return Mint(v)*=a;}
Mint operator/(Mint a) const{return Mint(v)/=a;}
Mint operator-() const{return v?Mint(MOD-v):Mint(v);}
bool operator==(const Mint a)const{return v==a.v;}
bool operator!=(const Mint a)const{return v!=a.v;}
bool operator <(const Mint a)const{return v <a.v;}
static Mint comb(long long n,int k){
Mint num(1),dom(1);
for(int i=0;i<k;i++){
num*=Mint(n-i);
dom*=Mint(i+1);
}
return num/dom;
}
};
template<typename T, T MOD> constexpr T Mint<T, MOD>::mod;
template<typename T, T MOD>
ostream& operator<<(ostream &os,Mint<T, MOD> m){os<<m.v;return os;}
//END CUT HERE
#ifndef call_from_test
signed main(){
return 0;
}
#endif
#ifndef call_from_test
#include<bits/stdc++.h>
using namespace std;
#endif
//BEGIN CUT HERE
namespace FFT{
using dbl = double;
struct num{
dbl x,y;
num(){x=y=0;}
num(dbl x,dbl y):x(x),y(y){}
};
inline num operator+(num a,num b){
return num(a.x+b.x,a.y+b.y);
}
inline num operator-(num a,num b){
return num(a.x-b.x,a.y-b.y);
}
inline num operator*(num a,num b){
return num(a.x*b.x-a.y*b.y,a.x*b.y+a.y*b.x);
}
inline num conj(num a){
return num(a.x,-a.y);
}
int base=1;
vector<num> rts={{0,0},{1,0}};
vector<int> rev={0,1};
const dbl PI=asinl(1)*2;
void ensure_base(int nbase){
if(nbase<=base) return;
rev.resize(1<<nbase);
for(int i=0;i<(1<<nbase);i++)
rev[i]=(rev[i>>1]>>1)+((i&1)<<(nbase-1));
rts.resize(1<<nbase);
while(base<nbase){
dbl angle=2*PI/(1<<(base+1));
for(int i=1<<(base-1);i<(1<<base);i++){
rts[i<<1]=rts[i];
dbl angle_i=angle*(2*i+1-(1<<base));
rts[(i<<1)+1]=num(cos(angle_i),sin(angle_i));
}
base++;
}
}
void fft(vector<num> &as){
int n=as.size();
assert((n&(n-1))==0);
int zeros=__builtin_ctz(n);
ensure_base(zeros);
int shift=base-zeros;
for(int i=0;i<n;i++)
if(i<(rev[i]>>shift))
swap(as[i],as[rev[i]>>shift]);
for(int k=1;k<n;k<<=1){
for(int i=0;i<n;i+=2*k){
for(int j=0;j<k;j++){
num z=as[i+j+k]*rts[j+k];
as[i+j+k]=as[i+j]-z;
as[i+j]=as[i+j]+z;
}
}
}
}
template<typename T>
vector<long long> multiply(vector<T> &as,vector<T> &bs){
int need=as.size()+bs.size()-1;
int nbase=0;
while((1<<nbase)<need) nbase++;
ensure_base(nbase);
int sz=1<<nbase;
vector<num> fa(sz);
for(int i=0;i<sz;i++){
T x=(i<(int)as.size()?as[i]:0);
T y=(i<(int)bs.size()?bs[i]:0);
fa[i]=num(x,y);
}
fft(fa);
num r(0,-0.25/sz);
for(int i=0;i<=(sz>>1);i++){
int j=(sz-i)&(sz-1);
num z=(fa[j]*fa[j]-conj(fa[i]*fa[i]))*r;
if(i!=j)
fa[j]=(fa[i]*fa[i]-conj(fa[j]*fa[j]))*r;
fa[i]=z;
}
fft(fa);
vector<long long> res(need);
for(int i=0;i<need;i++)
res[i]=round(fa[i].x);
return res;
}
};
//END CUT HERE
#ifndef call_from_test
signed main(){
return 0;
}
#endif
#ifndef call_from_test
#include <bits/stdc++.h>
using namespace std;
#define call_from_test
#include "fastfouriertransform.cpp"
#undef call_from_test
#endif
//BEGIN CUT HERE
template<typename T>
struct ArbitraryMod{
using dbl=FFT::dbl;
using num=FFT::num;
vector<T> multiply(vector<T> as,vector<T> bs){
int need=as.size()+bs.size()-1;
int sz=1;
while(sz<need) sz<<=1;
vector<num> fa(sz),fb(sz);
for(int i=0;i<(int)as.size();i++)
fa[i]=num(as[i].v&((1<<15)-1),as[i].v>>15);
for(int i=0;i<(int)bs.size();i++)
fb[i]=num(bs[i].v&((1<<15)-1),bs[i].v>>15);
fft(fa);fft(fb);
dbl ratio=0.25/sz;
num r2(0,-1),r3(ratio,0),r4(0,-ratio),r5(0,1);
for(int i=0;i<=(sz>>1);i++){
int j=(sz-i)&(sz-1);
num a1=(fa[i]+conj(fa[j]));
num a2=(fa[i]-conj(fa[j]))*r2;
num b1=(fb[i]+conj(fb[j]))*r3;
num b2=(fb[i]-conj(fb[j]))*r4;
if(i!=j){
num c1=(fa[j]+conj(fa[i]));
num c2=(fa[j]-conj(fa[i]))*r2;
num d1=(fb[j]+conj(fb[i]))*r3;
num d2=(fb[j]-conj(fb[i]))*r4;
fa[i]=c1*d1+c2*d2*r5;
fb[i]=c1*d2+c2*d1;
}
fa[j]=a1*b1+a2*b2*r5;
fb[j]=a1*b2+a2*b1;
}
fft(fa);fft(fb);
vector<T> cs(need);
using ll = long long;
for(int i=0;i<need;i++){
ll aa=T(llround(fa[i].x)).v;
ll bb=T(llround(fb[i].x)).v;
ll cc=T(llround(fa[i].y)).v;
cs[i]=T(aa+(bb<<15)+(cc<<30));
}
return cs;
}
};
//END CUT HERE
#ifndef call_from_test
signed main(){
return 0;
}
#endif
#ifndef call_from_test
#include <bits/stdc++.h>
using namespace std;
#define call_from_test
#include "../combinatorics/enumeration.cpp"
#include "base.cpp"
#undef call_from_test
#endif
//BEGIN CUT HERE
template<typename M>
vector<M> FormalPowerSeries<M>::inv(Poly as,int deg){
assert(as[0]!=M(0));
Poly rs({M(1)/as[0]});
for(int i=1;i<deg;i<<=1)
rs=pre(sub(add(rs,rs),mul(mul(rs,rs),pre(as,i<<1))),i<<1);
return rs;
}
//END CUT HERE
#ifndef call_from_test
//INSERT ABOVE HERE
signed main(){
return 0;
}
#endif
#ifndef call_from_test
#include <bits/stdc++.h>
using namespace std;
#define call_from_test
#include "../combinatorics/enumeration.cpp"
#include "base.cpp"
#include "inv.cpp"
#undef call_from_test
#endif
//BEGIN CUT HERE
template<typename M>
vector<M> FormalPowerSeries<M>::div(Poly as,Poly bs){
while(as.back()==M(0)) as.pop_back();
while(bs.back()==M(0)) bs.pop_back();
if(bs.size()>as.size()) return Poly();
reverse(as.begin(),as.end());
reverse(bs.begin(),bs.end());
int need=as.size()-bs.size()+1;
Poly ds=pre(mul(as,inv(bs,need)),need);
reverse(ds.begin(),ds.end());
return ds;
}
//END CUT HERE
#ifndef call_from_test
//INSERT ABOVE HERE
signed main(){
return 0;
}
#endif
#ifndef call_from_test
#include <bits/stdc++.h>
using namespace std;
#define call_from_test
#include "../combinatorics/enumeration.cpp"
#include "base.cpp"
#include "inv.cpp"
#include "div.cpp"
#undef call_from_test
#endif
//BEGIN CUT HERE
template<typename M>
vector<M> FormalPowerSeries<M>::mod(Poly as,Poly bs){
if(as==Poly(as.size(),0)) return Poly({0});
as=sub(as,mul(div(as,bs),bs));
if(as==Poly(as.size(),0)) return Poly({0});
while(as.back()==M(0)) as.pop_back();
return as;
}
//END CUT HERE
#ifndef call_from_test
//INSERT ABOVE HERE
signed main(){
return 0;
}
#endif
#undef call_from_test
signed main(){
using M = Mint<int>;
using Poly = vector<M>;
ArbitraryMod<M> arb;
auto conv=[&](auto as,auto bs){return arb.multiply(as,bs);};
const int d = 606 * 13;
auto calc=
[&](int l,vector<int> vs){
int m=vs.size();
vector<Poly> dp(m,Poly(d));
for(int i=0;i<m;i++) dp[i][0]=M(1);
for(int t=0;t<l;t++){
for(int i=0;i<m;i++){
for(int j=d-1;j>=0;j--){
dp[i][j]=0;
if(i) dp[i][j]+=dp[i-1][j];
if(j>=vs[i]) dp[i][j]+=dp[i][j-vs[i]];
}
}
}
return dp.back();
};
long long n;
int p,c;
cin>>n>>p>>c;
Poly cf({M(1)});
cf=conv(cf,calc(p,vector<int>({2,3,5,7,11,13})));
cf=conv(cf,calc(c,vector<int>({4,6,8,9,10,12})));
cf.resize(d,M(0));
Poly dp(d*3,0),as(d*3,0);
dp[0]=M(1);
for(int i=0;i<(int)dp.size();i++){
for(int j=0;j<d&&i+j<(int)dp.size();j++)
dp[i+j]+=dp[i]*cf[j];
for(int j=1;j<d&&i+j<(int)dp.size();j++)
as[i]+=dp[i+j];
}
as.resize(d*2);
Sequence<M> seq(conv);
cout<<seq.build(as)(n)<<endl;
return 0;
}
#endif
beet