結果
問題 | No.995 タピオカオイシクナーレ |
ユーザー | rokahikou1 |
提出日時 | 2020-11-23 01:41:33 |
言語 | C++14 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 42 ms / 2,000 ms |
コード長 | 6,067 bytes |
コンパイル時間 | 2,125 ms |
コンパイル使用メモリ | 176,572 KB |
実行使用メモリ | 5,376 KB |
最終ジャッジ日時 | 2024-07-23 16:52:51 |
合計ジャッジ時間 | 3,152 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 1 ms
5,248 KB |
testcase_01 | AC | 2 ms
5,376 KB |
testcase_02 | AC | 2 ms
5,376 KB |
testcase_03 | AC | 2 ms
5,376 KB |
testcase_04 | AC | 1 ms
5,376 KB |
testcase_05 | AC | 2 ms
5,376 KB |
testcase_06 | AC | 2 ms
5,376 KB |
testcase_07 | AC | 2 ms
5,376 KB |
testcase_08 | AC | 2 ms
5,376 KB |
testcase_09 | AC | 2 ms
5,376 KB |
testcase_10 | AC | 2 ms
5,376 KB |
testcase_11 | AC | 2 ms
5,376 KB |
testcase_12 | AC | 2 ms
5,376 KB |
testcase_13 | AC | 2 ms
5,376 KB |
testcase_14 | AC | 2 ms
5,376 KB |
testcase_15 | AC | 2 ms
5,376 KB |
testcase_16 | AC | 42 ms
5,376 KB |
testcase_17 | AC | 42 ms
5,376 KB |
testcase_18 | AC | 41 ms
5,376 KB |
testcase_19 | AC | 41 ms
5,376 KB |
testcase_20 | AC | 42 ms
5,376 KB |
testcase_21 | AC | 42 ms
5,376 KB |
testcase_22 | AC | 41 ms
5,376 KB |
testcase_23 | AC | 42 ms
5,376 KB |
testcase_24 | AC | 42 ms
5,376 KB |
testcase_25 | AC | 42 ms
5,376 KB |
ソースコード
#include <bits/stdc++.h> using namespace std; #define rep(i, n) for(int(i) = 0; (i) < (n); (i)++) #define FOR(i, m, n) for(int(i) = (m); (i) < (n); (i)++) #define All(v) (v).begin(), (v).end() #define pb push_back #define MP(a, b) make_pair((a), (b)) template <class T> vector<T> make_vec(size_t a, T val) { return vector<T>(a, val); } template <class... Ts> auto make_vec(size_t a, Ts... ts) { return vector<decltype(make_vec(ts...))>(a, make_vec(ts...)); } using ll = long long; using pii = pair<int, int>; using pll = pair<ll, ll>; using Graph = vector<vector<int>>; template <typename T> struct edge { int to; T cost; edge(int t, T c) : to(t), cost(c) {} }; template <typename T> using WGraph = vector<vector<edge<T>>>; const int INF = 1 << 30; const ll LINF = 1LL << 60; const int MOD = 1e9 + 7; template <uint_fast64_t MOD> class ModInt { using u64 = uint_fast64_t; public: u64 val; ModInt(const u64 x = 0) : val((x + MOD) % MOD) {} constexpr u64 &value() { return val; } constexpr ModInt operator-() { return val ? MOD - val : 0; } constexpr ModInt operator+(const ModInt &rhs) const { return ModInt(*this) += rhs; } constexpr ModInt operator-(const ModInt &rhs) const { return ModInt(*this) -= rhs; } constexpr ModInt operator*(const ModInt &rhs) const { return ModInt(*this) *= rhs; } constexpr ModInt operator/(const ModInt &rhs) const { return ModInt(*this) /= rhs; } constexpr ModInt &operator+=(const ModInt &rhs) { val += rhs.val; if(val >= MOD) { val -= MOD; } return *this; } constexpr ModInt &operator-=(const ModInt &rhs) { if(val < rhs.val) { val += MOD; } val -= rhs.val; return *this; } constexpr ModInt &operator*=(const ModInt &rhs) { val = val * rhs.val % MOD; return *this; } constexpr ModInt &operator/=(const ModInt &rhs) { *this *= rhs.inv(); return *this; } constexpr bool operator==(const ModInt &rhs) { return this->val == rhs.val; } constexpr bool operator!=(const ModInt &rhs) { return this->val != rhs.val; } friend constexpr ostream &operator<<(ostream &os, const ModInt<MOD> &x) { return os << x.val; } friend constexpr istream &operator>>(istream &is, ModInt<MOD> &x) { return is >> x.val; } constexpr ModInt inv() const { return ModInt(*this).pow(MOD - 2); } constexpr ModInt pow(ll e) const { u64 x = 1, p = val; while(e > 0) { if(e % 2 == 0) { p = (p * p) % MOD; e /= 2; } else { x = (x * p) % MOD; e--; } } return ModInt(x); } }; using mint = ModInt<MOD>; #include <cassert> // 参考:https://ei1333.github.io/luzhiled/snippets/math/matrix.html // (掛け算と累乗)https://yukicoder.me/submissions/523126 // 他は知らん template <class T> struct Matrix { vector<vector<T>> A; Matrix() {} Matrix(size_t n, size_t m) : A(n, vector<T>(m, 0)) {} Matrix(size_t n) : A(n, vector<T>(n, 0)) {} size_t height() const { return A.size(); } size_t width() const { return A[0].size(); } inline vector<T> &operator[](int k) { return A.at(k); } inline const vector<T> &operator[](int k) const { return A.at(k); } static Matrix I(size_t n) { Matrix mat(n); for(int i = 0; i < n; i++) mat[i][i] = 1; return mat; } Matrix &operator+=(const Matrix &B) { size_t h = height(), w = width(); assert(h == B.height() && w == B.width); for(int i = 0; i < h; i++) { for(int j = 0; j < w; j++) { (*this)[i][j] += B[i][j]; } } return *this; } Matrix &operator-=(const Matrix &B) { size_t h = height(), w = width(); assert(h == B.height() && w == B.width); for(int i = 0; i < h; i++) { for(int j = 0; j < w; j++) { (*this)[i][j] -= B[i][j]; } } return *this; } Matrix &operator*=(const Matrix &B) { size_t h = height(), w = B.width(), p = width(); assert(p == B.height()); vector<vector<T>> C(h, vector<T>(w, 0)); for(int i = 0; i < h; i++) { for(int j = 0; j < w; j++) { for(int k = 0; k < p; k++) { C[i][j] += (*this)[i][k] * B[k][j]; } } } A.swap(C); return *this; } Matrix &operator^=(ll k) { Matrix B = Matrix::I(height()); while(k > 0) { if(k & 1) B *= *this; *this *= *this; k >>= 1LL; } A.swap(B.A); return *this; } Matrix operator+(const Matrix &B) const { return (Matrix(*this) += B); } Matrix operator-(const Matrix &B) const { return (Matrix(*this) -= B); } Matrix operator*(const Matrix &B) const { return (Matrix(*this) *= B); } Matrix operator^(const ll k) const { return (Matrix(*this) ^= k); } friend ostream &operator<<(ostream &os, const Matrix &p) { size_t h = p.height(), w = p.width(); for(int i = 0; i < h; i++) { os << "["; for(int j = 0; j < w; j++) { os << p[i][j] << (j + 1 == w ? "]\n" : ","); } } return os; } }; int main() { ll N, M, K, p, q; cin >> N >> M >> K >> p >> q; vector<ll> B(N); rep(i, N) cin >> B[i]; Matrix<mint> mat(2, 2), vec(2, 1); mint r = mint(p) / q; vec[0][0] = 1; vec[1][0] = 0; mat[0][0] = -r + 1; mat[0][1] = r; mat[1][0] = r; mat[1][1] = -r + 1; auto P = (mat ^ (K)) * vec; mint res = 0; rep(i, N) { if(i < M) { res += P[0][0] * B[i]; } else { res += P[1][0] * B[i]; } } cout << res << endl; }