結果
| 問題 |
No.1050 Zero (Maximum)
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2020-11-23 04:15:00 |
| 言語 | Haskell (9.10.1) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 10,030 bytes |
| コンパイル時間 | 13,151 ms |
| コンパイル使用メモリ | 259,748 KB |
| 実行使用メモリ | 6,948 KB |
| 最終ジャッジ日時 | 2024-07-23 16:57:13 |
| 合計ジャッジ時間 | 14,289 ms |
|
ジャッジサーバーID (参考情報) |
judge5 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 1 WA * 2 |
| other | AC * 1 WA * 14 |
コンパイルメッセージ
Loaded package environment from /home/judge/.ghc/x86_64-linux-9.8.2/environments/default
Main.hs:9:14: warning: [GHC-53692] [-Wdeprecated-flags]
-XTypeInType is deprecated: use -XDataKinds and -XPolyKinds instead
|
9 | {-# LANGUAGE TypeInType #-}
| ^^^^^^^^^^
[1 of 2] Compiling Main ( Main.hs, Main.o )
[2 of 2] Linking a.out
ソースコード
{-# LANGUAGE BangPatterns #-}
{-# LANGUAGE CPP #-}
{-# LANGUAGE DerivingStrategies #-}
{-# LANGUAGE GeneralizedNewtypeDeriving #-}
{-# LANGUAGE MagicHash #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE TypeApplications #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE TypeInType #-}
{-# LANGUAGE UnboxedTuples #-}
import Control.Monad
import Control.Monad.Cont
import Control.Monad.Fix
import Control.Monad.ST
import Data.Bits
import Data.Coerce
import qualified Data.Ratio as R
import GHC.Exts
import qualified Data.Vector.Fusion.Stream.Monadic as VFSM
import qualified Data.Vector.Generic as VG
import qualified Data.Vector.Generic.Mutable as VGM
import qualified Data.Vector.Unboxed as VU
import qualified Data.Vector.Unboxed.Mutable as VUM
#define MOD 1000000007
modulus :: Num a => a
modulus = MOD
{-# INLINE modulus #-}
main :: IO ()
main = do
[m, k] <- map (read :: String -> Int) . words <$> getLine
let as = VU.replicate (m * m) (0 :: Int)
matA <- buildSquareMatrix as
rep m $ \i -> rep m $ \j -> do
VUM.unsafeModify matA succ (i * m + (i + j) `mod` m)
VUM.unsafeModify matA succ (i * m + (i * j) `mod` m)
matH <- powMat matA (k - 1)
mulMat matA matH
print =<< VUM.unsafeRead matA 0
type SquareMatrixMint = VUM.IOVector Mint
addMat :: SquareMatrixMint -> SquareMatrixMint -> IO ()
addMat a b = do
rep n $ \i -> do
item <- VUM.unsafeRead b i
VUM.unsafeModify a (+ item) i
where
!sz = VUM.length a
!n = floor . sqrt . fromIntegral $ sz
mulMat :: SquareMatrixMint -> SquareMatrixMint -> IO ()
mulMat a b = do
c <- VUM.unsafeNew sz :: IO SquareMatrixMint
rep n $ \i -> rep n $ \k -> rep n $ \j -> do
item1 <- VUM.unsafeRead a (i * n + k)
item2 <- VUM.unsafeRead b (k * n + j)
VUM.unsafeModify c (+ item1 * item2) (i * n + j)
rep sz $ \i -> VUM.unsafeRead c i >>= VUM.unsafeWrite a i
where
!sz = VUM.length a
!n = floor . sqrt . fromIntegral $ sz
powMat :: SquareMatrixMint -> Int -> IO SquareMatrixMint
powMat a m = do
b <- VUM.replicate sz 0 :: IO SquareMatrixMint
rep n $ \i -> VUM.unsafeWrite b (i * n + i) 1
flip fix m $ \loop !i -> do
when (i > 0) $ do
when (odd i) $ mulMat b a
mulMat a a
loop (i `div` 2)
return b
where
!sz = VUM.length a
!n = floor . sqrt . fromIntegral $ sz
buildSquareMatrix :: VU.Vector Int -> IO SquareMatrixMint
buildSquareMatrix vec
| isSquareMatrix vec = VU.unsafeThaw $ VU.map mint vec
| otherwise = VU.unsafeThaw $ VU.map mint vec VU.++ VU.replicate (m * m - n) (0 :: Mint)
where
!n = VU.length vec
!m = succ . floor . sqrt . fromIntegral $ n
isSquareMatrix :: VU.Vector Int -> Bool
isSquareMatrix vec = let n = VU.length vec in isSquare n
isSquare :: Int -> Bool
isSquare n = let m = floor . sqrt . fromIntegral $ n in n == m * m
infixr 8 ^%
infixl 7 *%, /%
infixl 6 +%, -%
(+%) :: Int -> Int -> Int
(I# x#) +% (I# y#) = case x# +# y# of
r# -> I# (r# -# ((r# >=# MOD#) *# MOD#))
{-# INLINE (+%) #-}
(-%) :: Int -> Int -> Int
(I# x#) -% (I# y#) = case x# -# y# of
r# -> I# (r# +# ((r# <# 0#) *# MOD#))
{-# INLINE (-%) #-}
(*%) :: Int -> Int -> Int
(I# x#) *% (I# y#) = case timesWord# (int2Word# x#) (int2Word# y#) of
z# -> case timesWord2# z# im# of
(# q#, _ #) -> case minusWord# z# (timesWord# q# m#) of
v# | isTrue# (geWord# v# m#) -> I# (word2Int# (plusWord# v# m#))
| otherwise -> I# (word2Int# v#)
where
m# = int2Word# MOD#
im# = plusWord# (quotWord# 0xffffffffffffffff## m#) 1##
{-# INLINE (*%) #-}
(/%) :: Int -> Int -> Int
(I# x#) /% (I# y#) = go# y# MOD# 1# 0#
where
go# a# b# u# v#
| isTrue# (b# ># 0#) = case a# `quotInt#` b# of
q# -> go# b# (a# -# (q# *# b#)) v# (u# -# (q# *# v#))
| otherwise = I# ((x# *# (u# +# MOD#)) `remInt#` MOD#)
{-# INLINE (/%) #-}
(^%) :: Int -> Int -> Int
x ^% n
| n > 0 = go 1 x n
| n == 0 = 1
| otherwise = go 1 (1 /% x) (-n)
where
go !acc !y !m
| m .&. 1 == 0 = go acc (y *% y) (unsafeShiftR m 1)
| m == 1 = acc *% y
| otherwise = go (acc *% y) (y *% y) (unsafeShiftR (m - 1) 1)
newtype Mint = Mint { getMint :: Int }
deriving newtype (Eq, Ord, Read, Show, Real)
mint :: Integral a => a -> Mint
mint x = fromIntegral $ mod (fromIntegral x) MOD
{-# INLINE mint #-}
mintValidate :: Mint -> Bool
mintValidate (Mint x) = 0 <= x && x < MOD
{-# INLINE mintValidate #-}
instance Bounded Mint where
minBound = Mint 0
maxBound = Mint $ modulus - 1
instance Enum Mint where
toEnum = mint
fromEnum = coerce
instance Integral Mint where
quotRem x y = (x / y, x - x / y * y)
toInteger = coerce (toInteger @Int)
instance Num Mint where
(+) = coerce (+%)
(-) = coerce (-%)
(*) = coerce (*%)
abs = id
signum = const (Mint 1)
fromInteger x = coerce @Int @Mint . fromInteger $ mod x modulus
instance Fractional Mint where
(/) = coerce (/%)
fromRational q = fromInteger (R.numerator q) / fromInteger (R.denominator q)
newtype instance VUM.MVector s Mint = MV_Mint (VUM.MVector s Int)
newtype instance VU.Vector Mint = V_Mint (VU.Vector Int)
instance VU.Unbox Mint
instance VGM.MVector VUM.MVector Mint where
basicLength (MV_Mint v) = VGM.basicLength v
{-# INLINE basicLength #-}
basicUnsafeSlice i n (MV_Mint v) = MV_Mint $ VGM.basicUnsafeSlice i n v
{-# INLINE basicUnsafeSlice #-}
basicOverlaps (MV_Mint v1) (MV_Mint v2) = VGM.basicOverlaps v1 v2
{-# INLINE basicOverlaps #-}
basicUnsafeNew n = MV_Mint `fmap` VGM.basicUnsafeNew n
{-# INLINE basicUnsafeNew #-}
basicInitialize (MV_Mint v) = VGM.basicInitialize v
{-# INLINE basicInitialize #-}
basicUnsafeReplicate n x = MV_Mint `fmap` VGM.basicUnsafeReplicate n (coerce x)
{-# INLINE basicUnsafeReplicate #-}
basicUnsafeRead (MV_Mint v) i = coerce `fmap` VGM.basicUnsafeRead v i
{-# INLINE basicUnsafeRead #-}
basicUnsafeWrite (MV_Mint v) i x = VGM.basicUnsafeWrite v i (coerce x)
{-# INLINE basicUnsafeWrite #-}
basicClear (MV_Mint v) = VGM.basicClear v
{-# INLINE basicClear #-}
basicSet (MV_Mint v) x = VGM.basicSet v (coerce x)
{-# INLINE basicSet #-}
basicUnsafeCopy (MV_Mint v1) (MV_Mint v2) = VGM.basicUnsafeCopy v1 v2
{-# INLINE basicUnsafeCopy #-}
basicUnsafeMove (MV_Mint v1) (MV_Mint v2) = VGM.basicUnsafeMove v1 v2
{-# INLINE basicUnsafeMove #-}
basicUnsafeGrow (MV_Mint v) n = MV_Mint `fmap` VGM.basicUnsafeGrow v n
{-# INLINE basicUnsafeGrow #-}
instance VG.Vector VU.Vector Mint where
basicUnsafeFreeze (MV_Mint v) = V_Mint `fmap` VG.basicUnsafeFreeze v
{-# INLINE basicUnsafeFreeze #-}
basicUnsafeThaw (V_Mint v) = MV_Mint `fmap` VG.basicUnsafeThaw v
{-# INLINE basicUnsafeThaw #-}
basicLength (V_Mint v) = VG.basicLength v
{-# INLINE basicLength #-}
basicUnsafeSlice i n (V_Mint v) = V_Mint $ VG.basicUnsafeSlice i n v
{-# INLINE basicUnsafeSlice #-}
basicUnsafeIndexM (V_Mint v) i = coerce `fmap` VG.basicUnsafeIndexM v i
{-# INLINE basicUnsafeIndexM #-}
basicUnsafeCopy (MV_Mint mv) (V_Mint v) = VG.basicUnsafeCopy mv v
elemseq _ = seq
{-# INLINE elemseq #-}
rep :: Monad m => Int -> (Int -> m ()) -> m ()
rep n = flip VFSM.mapM_ (streamG 0 (n - 1) const 0 (+) 1)
{-# INLINE rep #-}
rep' :: Monad m => Int -> (Int -> m ()) -> m ()
rep' n = flip VFSM.mapM_ (streamG 0 n const 0 (+) 1)
{-# INLINE rep' #-}
rep1 :: Monad m => Int -> (Int -> m ()) -> m ()
rep1 n = flip VFSM.mapM_ (streamG 1 (n - 1) const 0 (+) 1)
{-# INLINE rep1 #-}
rep1' :: Monad m => Int -> (Int -> m ()) -> m ()
rep1' n = flip VFSM.mapM_ (streamG 1 n const 0 (+) 1)
{-# INLINE rep1' #-}
rev :: Monad m => Int -> (Int -> m ()) -> m ()
rev n = flip VFSM.mapM_ (streamRG (n - 1) 0 const 0 (-) 1)
{-# INLINE rev #-}
rev' :: Monad m => Int -> (Int -> m ()) -> m ()
rev' n = flip VFSM.mapM_ (streamRG n 0 const 0 (-) 1)
{-# INLINE rev' #-}
rev1 :: Monad m => Int -> (Int -> m ()) -> m ()
rev1 n = flip VFSM.mapM_ (streamRG (n - 1) 1 const 0 (-) 1)
{-# INLINE rev1 #-}
rev1' :: Monad m => Int -> (Int -> m ()) -> m ()
rev1' n = flip VFSM.mapM_ (streamRG n 1 const 0 (-) 1)
{-# INLINE rev1' #-}
range :: Monad m => Int -> Int -> (Int -> m ()) -> m ()
range l r = flip VFSM.mapM_ (streamG l r const 0 (+) 1)
{-# INLINE range #-}
rangeR :: Monad m => Int -> Int -> (Int -> m ()) -> m ()
rangeR r l = flip VFSM.mapM_ (streamRG r l const 0 (-) 1)
{-# INLINE rangeR #-}
forP :: Monad m => Int -> (Int -> m ()) -> m ()
forP p = flip VFSM.mapM_ (streamG 2 p (^) 2 (+) 1)
{-# INLINE forP #-}
forG :: Monad m => Int -> Int -> (Int -> Int -> Int) -> Int -> (Int -> Int -> Int) -> Int -> (Int -> m ()) -> m ()
forG l r f p g d = flip VFSM.mapM_ (streamG l r f p g d)
{-# INLINE forG #-}
forRG :: Monad m => Int -> Int -> (Int -> Int -> Int) -> Int -> (Int -> Int -> Int) -> Int -> (Int -> m ()) -> m ()
forRG r l f p g d = flip VFSM.mapM_ (streamRG r l f p g d)
{-# INLINE forRG #-}
streamG :: Monad m => Int -> Int -> (Int -> Int -> Int) -> Int -> (Int -> Int -> Int) -> Int -> VFSM.Stream m Int
streamG !l !r !f !p !g !d = VFSM.Stream step l
where
step x
| f x p <= r = return $ VFSM.Yield x (g x d)
| otherwise = return VFSM.Done
{-# INLINE [0] step #-}
{-# INLINE [1] streamG #-}
streamRG :: Monad m => Int -> Int -> (Int -> Int -> Int) -> Int -> (Int -> Int -> Int) -> Int -> VFSM.Stream m Int
streamRG !r !l !f !p !g !d = VFSM.Stream step r
where
step x
| f x p >= l = return $ VFSM.Yield x (g x d)
| otherwise = return VFSM.Done
{-# INLINE [0] step #-}
{-# INLINE [1] streamRG #-}
withBreakIO :: ((r -> ContT r IO b) -> ContT r IO r) -> IO r
withBreakIO = flip runContT pure . callCC
{-# INLINE withBreakIO #-}
withBreakST :: ((r -> ContT r (ST s) b) -> ContT r (ST s) r) -> (ST s) r
withBreakST = flip runContT pure . callCC
{-# INLINE withBreakST #-}