結果

問題 No.1561 connect x connect
ユーザー shinchan
提出日時 2020-11-23 11:14:22
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
MLE  
(最新)
AC  
(最初)
実行時間 -
コード長 6,812 bytes
コンパイル時間 4,257 ms
コンパイル使用メモリ 246,232 KB
最終ジャッジ日時 2025-01-16 04:53:53
ジャッジサーバーID
(参考情報)
judge3 / judge4
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 14 TLE * 18 MLE * 3
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#include <bits/stdc++.h>
#define be(v) (v).begin(),(v).end()
#define pb(q) push_back(q)
typedef long long ll;
using namespace std;
const ll modl=1000000007, INF=(1LL<<60);
#define doublecout(a) cout<<fixed<<setprecision(10)<<a<<endl;
#define rep(i,n) for (int i = 0; i < (n); ++i)
#define repp(i,n,m) for (int i = m; i < (n); ++i)
/*
struct mint {
ll x; // typedef long long ll;
mint(ll x=0):x((x%mod+mod)%mod){}
mint operator-() const { return mint(-x);}
mint& operator+=(const mint a) {
if ((x += a.x) >= mod) x -= mod;
return *this;
}
mint& operator-=(const mint a) {
if ((x += mod-a.x) >= mod) x -= mod;
return *this;
}
mint& operator*=(const mint a) { (x *= a.x) %= mod; return *this;}
mint operator+(const mint a) const { return mint(*this) += a;}
mint operator-(const mint a) const { return mint(*this) -= a;}
mint operator*(const mint a) const { return mint(*this) *= a;}
mint pow(ll t) const {
if (!t) return 1;
mint a = pow(t>>1);
a *= a;
if (t&1) a *= *this;
return a;
}
// for prime mod
mint inv() const { return pow(mod-2);}
mint& operator/=(const mint a) { return *this *= a.inv();}
mint operator/(const mint a) const { return mint(*this) /= a;}
};*/
struct UnionFind {
vector<int> d;
UnionFind(int n=0): d(n,-1) {}
int find(int x) {
if (d[x] < 0) return x;
return d[x] = find(d[x]);
}
bool unite(int x, int y) {
x = find(x); y = find(y);
if (x == y) return false;
if (d[x] > d[y]) swap(x,y);
d[x] += d[y];
d[y] = x;
return true;
}
bool same(int x, int y) { return find(x) == find(y);}
int size(int x) { return -d[find(x)];}
};
int count(vector<int> v){
v.pb(0);
int ret = 0;
bool f = false;
for(int i : v){
if(i) f = true;
else if(f) ret++, f = false;
}
return ret;
}
vector<int> paint(vector<int> &a, vector<int> &b){
int id = 0, n = a.size();
vector<int> ret(n, 0);
bool f = false;
for(int i=0;i<n;i++){
if(a[i]) ret[i] = b[id], f = true;
else if(f) id++, f = false;
}
return ret;
}
//ab
vector<int> iro(vector<int> &a, vector<int> &b){
int n = a.size();
vector<int> ans(n,0);
int ma = 0;
rep(i,n) ma = max(ma,a[i]);
vector<vector<int>> ar(ma,vector<int>(0));
vector<bool> ok(ma,false);
rep(i,n){
if (a[i] != 0){
if (b[i] == 1) ok[a[i]-1] = true;
ar[a[i]-1].emplace_back(i);
}
}
rep(i,ma) if (!ok[i]) return ans;
UnionFind tree(n);
repp(i,n,1){
if (b[i-1] == 1 && b[i] == 1) tree.unite(i-1,i);
}
rep(i,ma){
auto &r = ar[i];
repp(j,r.size(),1) tree.unite(r[0],r[j]);
}
int ima = 1;
map<int,int> mp;
rep(i,n){
if (b[i] == 0) ans[i] = 0;
else {
int ne = tree.find(i);
if (mp.find(ne) == mp.end()){
mp[ne] = ima;
ans[i] = ima;
ima++;
}
else {
ans[i] = mp[ne];
}
}
}
return ans;
}
struct dat{
set<int> s;
stack<int> st;
vector<int> an;
set<int> stin;
int ima;
};
set<int> ::iterator ite;;
vector<vector<int>> komo(int n){
vector<vector<int>> ans(0,vector<int>(n));
queue<dat> que;
dat a; a.ima = 2; a.s.insert(1); que.push(a);
while (!que.empty()){
dat q = que.front(); que.pop();
if (q.an.size() == n){
ans.emplace_back(q.an);
continue;
}
for (ite = q.s.begin(); ite != q.s.end(); ite++){
dat p = q;
int m = *ite;
if (p.stin.find(m) == p.stin.end()){
p.an.emplace_back(m);
p.stin.insert(m);
p.st.push(m);
if (m == p.ima -1){
p.s.insert(p.ima);
p.ima++;
}
}
else {
p.an.emplace_back(m);
int col = p.st.top();
while (col != m){
p.s.erase(col);
p.st.pop();
col = p.st.top();
}
}
que.push(p);
}
}
return ans;
}
//S_(m,1)
bool chan(vector<int> &a){
int ma = 0;
vector<int> si = a;
rep(i,a.size()) {
ma = max(ma,a[i]);
if (a[i] == 0) si[i] = 0;
else si[i] = 1;
}
return ma == count(si);
}
vector<ll> tugi(vector<vector<ll>> &mat, vector<ll> ima){
vector<ll> ans(ima.size(),0LL);
rep(i,ima.size()){
rep(j,ima.size()){
ans[i] += mat[i][j] * ima[j];
ans[i] %= modl;
}
}
return ans;
}
vector<ll> mnpoly(vector<vector<ll>> &mnp, vector<int> &truepoly){
vector<ll> ans(mnp.size(),0LL);
rep(i,mnp.size()){
rep(j,truepoly.size()){
ans[i] += mnp[i][truepoly[j]];
}
}
return ans;
}
int main() {
int m; cin >> m;
int n; cin >> n;
int ni = 1<<m;
vector<vector<int>> ar(1<<m,vector<int>(m));
repp(i,1<<m,1){
rep(j,m){
if (i >> j & 1) ar[i][j] = 1;
else ar[i][j] = 0;
}
}
vector<vector<vector<int>>> col((m+3)/2,vector<vector<int>>(0,vector<int>(0)));
repp(i,(m+3)/2,1){
col[i] = komo(i);
}
vector<vector<int>> ans;
rep(i,ar.size()){
int a = count(ar[i]);
rep(j,col[a].size()){
auto b = ar[i];
ans.emplace_back(paint(b,col[a][j]));
}
}
//the number of recurrence formulas
int zen = ans.size();
map<vector<int>,int> mp;
rep(i,zen){
mp[ans[i]] = i;
}
//recurrence matrix
vector<vector<ll>> mat(zen,vector<ll>(zen,0LL));
vector<int> tan(m,0);
rep(i,zen){
repp(j,ni,1){
auto x = iro(ans[i],ar[j]);
if (x == tan) continue;
int ind = mp[x];
mat[ind][i] += 1LL;
}
}
vector<vector<ll>> mnp(1,vector<ll>(zen));
rep(i,zen){
if (chan(ans[i])) mnp[0][i] = 1LL;
else mnp[0][i] = 0LL;
}
rep(i,n){
auto a = mnp[i];
auto b = tugi(mat,a);
mnp.emplace_back(b);
}
//polyominoindex
vector<int> truepoly;
rep(i,zen){
bool t = true;
rep(j,m){
if (ans[i][j] > 1) t = false;
}
if (t) truepoly.emplace_back(i);
}
auto kai = mnpoly(mnp,truepoly);
ll polysum = 0LL;
rep(i,n) {
polysum += ll(n-i) * kai[i];
polysum %= modl;
}
cout << polysum << endl;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0