結果

問題 No.1050 Zero (Maximum)
ユーザー こまるこまる
提出日時 2020-11-23 11:37:19
言語 Haskell
(9.8.2)
結果
TLE  
実行時間 -
コード長 9,916 bytes
コンパイル時間 2,578 ms
コンパイル使用メモリ 271,920 KB
実行使用メモリ 14,096 KB
最終ジャッジ日時 2023-09-30 23:42:59
合計ジャッジ時間 8,910 ms
ジャッジサーバーID
(参考情報)
judge15 / judge11
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 TLE -
testcase_01 -- -
testcase_02 -- -
testcase_03 -- -
testcase_04 -- -
testcase_05 -- -
testcase_06 -- -
testcase_07 -- -
testcase_08 -- -
testcase_09 -- -
testcase_10 -- -
testcase_11 -- -
testcase_12 -- -
testcase_13 -- -
testcase_14 -- -
testcase_15 -- -
testcase_16 -- -
testcase_17 -- -
権限があれば一括ダウンロードができます
コンパイルメッセージ
Loaded package environment from /home/judge/.ghc/x86_64-linux-9.6.1/environments/default

Main.hs:9:14: warning: [-Wdeprecated-flags]
    -XTypeInType is deprecated: use -XDataKinds and -XPolyKinds instead
  |
9 | {-# LANGUAGE TypeInType                 #-}
  |              ^^^^^^^^^^
[1 of 2] Compiling Main             ( Main.hs, Main.o )
[2 of 2] Linking a.out

ソースコード

diff #

{-# LANGUAGE BangPatterns               #-}
{-# LANGUAGE CPP                        #-}
{-# LANGUAGE DerivingStrategies         #-}
{-# LANGUAGE GeneralizedNewtypeDeriving #-}
{-# LANGUAGE MagicHash                  #-}
{-# LANGUAGE MultiParamTypeClasses      #-}
{-# LANGUAGE TypeApplications           #-}
{-# LANGUAGE TypeFamilies               #-}
{-# LANGUAGE TypeInType                 #-}
{-# LANGUAGE UnboxedTuples              #-}

import           Control.Monad.Cont
import           Control.Monad.ST
import           Data.Bits
import           Data.Bool
import           Data.Coerce
import           Data.Maybe
import qualified Data.Ratio                        as R
import           GHC.Exts
import qualified Data.ByteString.Char8             as BSC8
import qualified Data.Vector.Fusion.Stream.Monadic as VFSM
import qualified Data.Vector.Generic               as VG
import qualified Data.Vector.Generic.Mutable       as VGM
import qualified Data.Vector.Unboxed               as VU
import qualified Data.Vector.Unboxed.Mutable       as VUM

#define MOD 1000000007

modulus :: Num a => a
modulus = MOD
{-# INLINE modulus #-}

----------------------------------------------------------------

main :: IO ()
main = do
  [m, k] <- map (read :: String -> Int) . words <$> getLine
  matA <- VUM.replicate (m * m) 0 :: IO (VUM.IOVector Mint)
  rep m $ \i -> rep m $ \j -> do
    VUM.unsafeModify matA (+ 1) (((i + j) `mod` m) * m + i)
    VUM.unsafeModify matA (+ 1) ((i * j `mod` m) * m + i)
  matH <- VU.unsafeFreeze matA
  print $ powMat matH k m VU.! 0

type Matrix = VU.Vector Mint

buildMatrix :: VU.Vector Int -> Matrix
buildMatrix = VU.map mint
{-# INLINE buildMatrix #-}

matO :: Int -> Matrix
matO !sz = VU.replicate sz (0 :: Mint) 
{-# INLINE matO #-}

matE :: Int -> Matrix
matE !sz = VU.imap (\i _ -> bool 0 1 (i `mod` (sz + 1) == 0)) $ VU.replicate (sz * sz) (0 :: Mint)
{-# INLINE matE #-}

plusMat :: Matrix -> Matrix -> Matrix
plusMat = VU.zipWith (+)
{-# INLINE plusMat #-}

mulMat :: Matrix -> Matrix -> Int -> Matrix
mulMat !a !b !sz = VU.create $ do
  c <- VUM.unsafeNew (sz * sz) :: ST s (VUM.STVector s Mint)
  rep sz $ \i -> rep sz $ \j -> rep sz $ \k -> VUM.unsafeModify c (+ (a VU.! (i * sz + k)) * (b VU.! (k * sz + j))) (i * sz + j)
  return c
{-# INLINE mulMat #-}

powMat :: Matrix -> Int -> Int -> Matrix
powMat !a !n !sz
  | n == 1    = a
  | n == 0    = matE sz
  | even n    = mulMat z z sz
  | otherwise = mulMat a (mulMat z z sz) sz
  where
    !z = powMat a (n `div` 2) sz

----------------------------------------------------------------

infixr 8 ^%
infixl 7 *%, /%
infixl 6 +%, -%

(+%) :: Int -> Int -> Int
(I# x#) +% (I# y#) = case x# +# y# of
  r# -> I# (r# -# ((r# >=# MOD#) *# MOD#))
{-# INLINE (+%) #-}
(-%) :: Int -> Int -> Int
(I# x#) -% (I# y#) = case x# -# y# of
  r# -> I# (r# +# ((r# <# 0#) *# MOD#))
{-# INLINE (-%) #-}
(*%) :: Int -> Int -> Int
(I# x#) *% (I# y#) = case timesWord# (int2Word# x#) (int2Word# y#) of
  z# -> case timesWord2# z# im# of
    (# q#, _ #) -> case minusWord# z# (timesWord# q# m#) of
      v#  | isTrue# (geWord# v# m#) -> I# (word2Int# (plusWord# v# m#))
          | otherwise -> I# (word2Int# v#)
  where
    m#  = int2Word# MOD#
    im# = plusWord# (quotWord# 0xffffffffffffffff## m#) 1##
{-# INLINE (*%) #-}
(/%) :: Int -> Int -> Int
(I# x#) /% (I# y#) = go# y# MOD# 1# 0#
  where
    go# a# b# u# v#
      | isTrue# (b# ># 0#) = case a# `quotInt#` b# of
        q# -> go# b# (a# -# (q# *# b#)) v# (u# -# (q# *# v#))
      | otherwise = I# ((x# *# (u# +# MOD#)) `remInt#` MOD#)
{-# INLINE (/%) #-}
(^%) :: Int -> Int -> Int
x ^% n
  | n > 0  = go 1 x n
  | n == 0 = 1
  | otherwise = go 1 (1 /% x) (-n)
  where
    go !acc !y !m
      | m .&. 1 == 0 = go acc (y *% y) (unsafeShiftR m 1)
      | m == 1       = acc *% y
      | otherwise    = go (acc *% y) (y *% y) (unsafeShiftR (m - 1) 1)

newtype Mint = Mint { getMint :: Int }
  deriving newtype (Eq, Ord, Read, Show, Real)

mint :: Integral a => a -> Mint
mint x = fromIntegral $ mod (fromIntegral x) MOD
{-# INLINE mint #-}

mintValidate :: Mint -> Bool
mintValidate (Mint x) = 0 <= x && x < MOD
{-# INLINE mintValidate #-}

instance Bounded Mint where
  minBound = Mint 0
  maxBound = Mint $ modulus - 1

instance Enum Mint where
  toEnum = mint
  fromEnum = coerce

instance Integral Mint where
  quotRem x y = (x / y, x - x / y * y)
  toInteger = coerce (toInteger @Int)

instance Num Mint where
  (+) = coerce (+%)
  (-) = coerce (-%)
  (*) = coerce (*%)
  abs = id
  signum = const (Mint 1)
  fromInteger x = coerce @Int @Mint . fromInteger $ mod x modulus

instance Fractional Mint where
  (/) = coerce (/%)
  fromRational q = fromInteger (R.numerator q) / fromInteger (R.denominator q)

newtype instance VUM.MVector s Mint = MV_Mint (VUM.MVector s Int)
newtype instance VU.Vector Mint = V_Mint (VU.Vector Int)

instance VU.Unbox Mint

instance VGM.MVector VUM.MVector Mint where
  basicLength (MV_Mint v) = VGM.basicLength v
  {-# INLINE basicLength #-}
  basicUnsafeSlice i n (MV_Mint v) = MV_Mint $ VGM.basicUnsafeSlice i n v
  {-# INLINE basicUnsafeSlice #-}
  basicOverlaps (MV_Mint v1) (MV_Mint v2) = VGM.basicOverlaps v1 v2
  {-# INLINE basicOverlaps #-}
  basicUnsafeNew n = MV_Mint `fmap` VGM.basicUnsafeNew n
  {-# INLINE basicUnsafeNew #-}
  basicInitialize (MV_Mint v) = VGM.basicInitialize v
  {-# INLINE basicInitialize #-}
  basicUnsafeReplicate n x = MV_Mint `fmap` VGM.basicUnsafeReplicate n (coerce x)
  {-# INLINE basicUnsafeReplicate #-}
  basicUnsafeRead (MV_Mint v) i = coerce `fmap` VGM.basicUnsafeRead v i
  {-# INLINE basicUnsafeRead #-}
  basicUnsafeWrite (MV_Mint v) i x = VGM.basicUnsafeWrite v i (coerce x)
  {-# INLINE basicUnsafeWrite #-}
  basicClear (MV_Mint v) = VGM.basicClear v
  {-# INLINE basicClear #-}
  basicSet (MV_Mint v) x = VGM.basicSet v (coerce x)
  {-# INLINE basicSet #-}
  basicUnsafeCopy (MV_Mint v1) (MV_Mint v2) = VGM.basicUnsafeCopy v1 v2
  {-# INLINE basicUnsafeCopy #-}
  basicUnsafeMove (MV_Mint v1) (MV_Mint v2) = VGM.basicUnsafeMove v1 v2
  {-# INLINE basicUnsafeMove #-}
  basicUnsafeGrow (MV_Mint v) n = MV_Mint `fmap` VGM.basicUnsafeGrow v n
  {-# INLINE basicUnsafeGrow #-}

instance VG.Vector VU.Vector Mint where
  basicUnsafeFreeze (MV_Mint v) = V_Mint `fmap` VG.basicUnsafeFreeze v
  {-# INLINE basicUnsafeFreeze #-}
  basicUnsafeThaw (V_Mint v) = MV_Mint `fmap` VG.basicUnsafeThaw v
  {-# INLINE basicUnsafeThaw #-}
  basicLength (V_Mint v) = VG.basicLength v
  {-# INLINE basicLength #-}
  basicUnsafeSlice i n (V_Mint v) = V_Mint $ VG.basicUnsafeSlice i n v
  {-# INLINE basicUnsafeSlice #-}
  basicUnsafeIndexM (V_Mint v) i = coerce `fmap` VG.basicUnsafeIndexM v i
  {-# INLINE basicUnsafeIndexM #-}
  basicUnsafeCopy (MV_Mint mv) (V_Mint v) = VG.basicUnsafeCopy mv v
  elemseq _ = seq
  {-# INLINE elemseq #-}

rep :: Monad m => Int -> (Int -> m ()) -> m ()
rep n = flip VFSM.mapM_ (streamG 0 (n - 1) const 0 (+) 1)
{-# INLINE rep #-}

rep' :: Monad m => Int -> (Int -> m ()) -> m ()
rep' n = flip VFSM.mapM_ (streamG 0 n const 0 (+) 1)
{-# INLINE rep' #-}

rep1 :: Monad m => Int -> (Int -> m ()) -> m ()
rep1 n = flip VFSM.mapM_ (streamG 1 (n - 1) const 0 (+) 1)
{-# INLINE rep1 #-}

rep1' :: Monad m => Int -> (Int -> m ()) -> m ()
rep1' n = flip VFSM.mapM_ (streamG 1 n const 0 (+) 1)
{-# INLINE rep1' #-}

rev :: Monad m => Int -> (Int -> m ()) -> m ()
rev n = flip VFSM.mapM_ (streamRG (n - 1) 0 const 0 (-) 1)
{-# INLINE rev #-}

rev' :: Monad m => Int -> (Int -> m ()) -> m ()
rev' n = flip VFSM.mapM_ (streamRG n 0 const 0 (-) 1)
{-# INLINE rev' #-}

rev1 :: Monad m => Int -> (Int -> m ()) -> m ()
rev1 n = flip VFSM.mapM_ (streamRG (n - 1) 1 const 0 (-) 1)
{-# INLINE rev1 #-}

rev1' :: Monad m => Int -> (Int -> m ()) -> m ()
rev1' n = flip VFSM.mapM_ (streamRG n 1 const 0 (-) 1)
{-# INLINE rev1' #-}

range :: Monad m => Int -> Int -> (Int -> m ()) -> m ()
range l r = flip VFSM.mapM_ (streamG l r const 0 (+) 1)
{-# INLINE range #-}

rangeR :: Monad m => Int -> Int -> (Int -> m ()) -> m ()
rangeR r l = flip VFSM.mapM_ (streamRG r l const 0 (-) 1)
{-# INLINE rangeR #-}

forP :: Monad m => Int -> (Int -> m ()) -> m ()
forP p = flip VFSM.mapM_ (streamG 2 p (^) 2 (+) 1)
{-# INLINE forP #-}

forG :: Monad m => Int -> Int -> (Int -> Int -> Int) -> Int -> (Int -> Int -> Int) -> Int -> (Int -> m ()) -> m ()
forG l r f p g d = flip VFSM.mapM_ (streamG l r f p g d)
{-# INLINE forG #-}

forRG :: Monad m => Int -> Int -> (Int -> Int -> Int) -> Int -> (Int -> Int -> Int) -> Int -> (Int -> m ()) -> m ()
forRG r l f p g d = flip VFSM.mapM_ (streamRG r l f p g d)
{-# INLINE forRG #-}

streamG :: Monad m => Int -> Int -> (Int -> Int -> Int) -> Int -> (Int -> Int -> Int) -> Int -> VFSM.Stream m Int
streamG !l !r !f !p !g !d = VFSM.Stream step l
  where
    step x
      | f x p <= r = return $ VFSM.Yield x (g x d)
      | otherwise  = return VFSM.Done
    {-# INLINE [0] step #-}
{-# INLINE [1] streamG #-}

streamRG :: Monad m => Int -> Int -> (Int -> Int -> Int) -> Int -> (Int -> Int -> Int) -> Int -> VFSM.Stream m Int
streamRG !r !l !f !p !g !d = VFSM.Stream step r
  where
    step x
      | f x p >= l = return $ VFSM.Yield x (g x d)
      | otherwise  = return VFSM.Done
    {-# INLINE [0] step #-}
{-# INLINE [1] streamRG #-}

withBreakIO :: ((r -> ContT r IO b) -> ContT r IO r) -> IO r
withBreakIO = flip runContT pure . callCC
{-# INLINE withBreakIO #-}

withBreakST :: ((r -> ContT r (ST s) b) -> ContT r (ST s) r) -> (ST s) r
withBreakST = flip runContT pure . callCC
{-# INLINE withBreakST #-}

readInt :: BSC8.ByteString -> Int
readInt = fst . fromJust . BSC8.readInt
{-# INLINE readInt #-}
getInt :: IO Int
getInt = readInt <$> BSC8.getLine
{-# INLINE getInt #-}
readIntList :: BSC8.ByteString -> [Int]
readIntList = map readInt . BSC8.words
{-# INLINE readIntList #-}
getIntList :: IO [Int]
getIntList = readIntList <$> BSC8.getContents
{-# INLINE getIntList #-}
0