結果

問題 No.1294 マウンテン数列
ユーザー ChanyuhChanyuh
提出日時 2020-11-26 15:13:23
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 630 ms / 2,000 ms
コード長 6,914 bytes
コンパイル時間 1,301 ms
コンパイル使用メモリ 131,340 KB
実行使用メモリ 6,944 KB
最終ジャッジ日時 2024-07-23 20:50:35
合計ジャッジ時間 6,517 ms
ジャッジサーバーID
(参考情報)
judge3 / judge1
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 17 ms
6,816 KB
testcase_01 AC 15 ms
6,944 KB
testcase_02 AC 15 ms
6,944 KB
testcase_03 AC 3 ms
6,940 KB
testcase_04 AC 3 ms
6,940 KB
testcase_05 AC 80 ms
6,940 KB
testcase_06 AC 108 ms
6,944 KB
testcase_07 AC 9 ms
6,940 KB
testcase_08 AC 2 ms
6,940 KB
testcase_09 AC 6 ms
6,940 KB
testcase_10 AC 630 ms
6,940 KB
testcase_11 AC 618 ms
6,940 KB
testcase_12 AC 625 ms
6,944 KB
testcase_13 AC 602 ms
6,944 KB
testcase_14 AC 500 ms
6,940 KB
testcase_15 AC 590 ms
6,944 KB
testcase_16 AC 500 ms
6,944 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include<iostream>
#include<array>
#include<string>
#include<cstdio>
#include<vector>
#include<cmath>
#include<algorithm>
#include<functional>
#include<iomanip>
#include<queue>
#include<ciso646>
#include<random>
#include<map>
#include<set>
#include<complex>
#include<bitset>
#include<stack>
#include<unordered_map>
#include<utility>
#include<tuple>
#include<cassert>
using namespace std;
typedef long long ll;
typedef unsigned int ui;
const ll mod = 998244353;
const ll INF = (ll)1000000007 * 1000000007;
typedef pair<int, int> P;
#define stop char nyaa;cin>>nyaa;
#define rep(i,n) for(int i=0;i<n;i++)
#define per(i,n) for(int i=n-1;i>=0;i--)
#define Rep(i,sta,n) for(int i=sta;i<n;i++)
#define Per(i,sta,n) for(int i=n-1;i>=sta;i--)
#define rep1(i,n) for(int i=1;i<=n;i++)
#define per1(i,n) for(int i=n;i>=1;i--)
#define Rep1(i,sta,n) for(int i=sta;i<=n;i++)
typedef long double ld;
const ld eps = 1e-8;
const ld pi = acos(-1.0);
typedef pair<ll, ll> LP;
int dx[4]={1,-1,0,0};
int dy[4]={0,0,1,-1};
template<class T>bool chmax(T &a, const T &b) {if(a<b){a=b;return 1;}return 0;}
template<class T>bool chmin(T &a, const T &b) {if(b<a){a=b;return 1;}return 0;}

template<int mod>
struct ModInt {
    long long x;
    static constexpr int MOD = mod;
 
    ModInt() : x(0) {}
    ModInt(long long y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}

    explicit operator int() const {return x;}
 
    ModInt &operator+=(const ModInt &p) {
        if((x += p.x) >= mod) x -= mod;
        return *this;
    }
    ModInt &operator-=(const ModInt &p) {
        if((x += mod - p.x) >= mod) x -= mod;
        return *this;
    }
    ModInt &operator*=(const ModInt &p) {
        x = (int)(1LL * x * p.x % mod);
        return *this;
    }
    ModInt &operator/=(const ModInt &p) {
        *this *= p.inverse();
        return *this;
    }
 
    ModInt operator-() const { return ModInt(-x); }
    ModInt operator+(const ModInt &p) const { return ModInt(*this) += p; }
    ModInt operator-(const ModInt &p) const { return ModInt(*this) -= p; }
    ModInt operator*(const ModInt &p) const { return ModInt(*this) *= p; }
    ModInt operator/(const ModInt &p) const { return ModInt(*this) /= p; }
    ModInt operator%(const ModInt &p) const { return ModInt(0); }         
 
    bool operator==(const ModInt &p) const { return x == p.x; }
    bool operator!=(const ModInt &p) const { return x != p.x; }
 
    ModInt inverse() const{
        int a = x, b = mod, u = 1, v = 0, t;
        while(b > 0) {
            t = a / b;
            a -= t * b;
            swap(a, b);
            u -= t * v;
            swap(u, v);
        }
        return ModInt(u);
    }

    ModInt power(long long n) const {
        ModInt ret(1), mul(x);
        while(n > 0) {
            if(n & 1)
            ret *= mul;
            mul *= mul;
            n >>= 1;
        }
        return ret;
    }

    ModInt power(const ModInt p) const{
        return ((ModInt)x).power(p.x);
    }

    friend ostream &operator<<(ostream &os, const ModInt<mod> &p) {
        return os << p.x;
    }
    friend istream &operator>>(istream &is, ModInt<mod> &a) {
        long long x;
        is >> x;
        a = ModInt<mod>(x);
        return (is);
    }
};

using modint = ModInt<mod>;

template <class S, S (*op)(S, S), S (*e)()> struct SegmentTree {
  public:
    SegmentTree() : SegmentTree(0) {}
    SegmentTree(int n) : SegmentTree(std::vector<S>(n, e())) {}
    SegmentTree(const std::vector<S>& v) : _n(int(v.size())) {
        log = ceil_pow2(_n);
        size = 1 << log;
        d = std::vector<S>(2 * size, e());
        for (int i = 0; i < _n; i++) d[size + i] = v[i];
        for (int i = size - 1; i >= 1; i--) {
            update(i);
        }
    }

    void set_val(int p, S x) {
        assert(0 <= p && p < _n);
        p += size;
        d[p] = x;
        for (int i = 1; i <= log; i++) update(p >> i);
    }

    S get(int p) {
        assert(0 <= p && p < _n);
        return d[p + size];
    }

    S query(int l, int r) {
        assert(0 <= l && l <= r && r <= _n);
        S sml = e(), smr = e();
        l += size;
        r += size;

        while (l < r) {
            if (l & 1) sml = op(sml, d[l++]);
            if (r & 1) smr = op(d[--r], smr);
            l >>= 1;
            r >>= 1;
        }
        return op(sml, smr);
    }

    S all_query() { return d[1]; }

    template <bool (*f)(S)> int max_right(int l) {//f(op([l,r)))==trueを満たす最大のr
        return max_right(l, [](S x) { return f(x); });
    }
    template <class F> int max_right(int l, F f) {
        assert(0 <= l && l <= _n);
        assert(f(e()));
        if (l == _n) return _n;
        l += size;
        S sm = e();
        do {
            while (l % 2 == 0) l >>= 1;
            if (!f(op(sm, d[l]))) {
                while (l < size) {
                    l = (2 * l);
                    if (f(op(sm, d[l]))) {
                        sm = op(sm, d[l]);
                        l++;
                    }
                }
                return l - size;
            }
            sm = op(sm, d[l]);
            l++;
        } while ((l & -l) != l);
        return _n;
    }

    template <bool (*f)(S)> int min_left(int r) {//f(op([l,r)))==trueを満たす最小のl
        return min_left(r, [](S x) { return f(x); });
    }
    template <class F> int min_left(int r, F f) {
        assert(0 <= r && r <= _n);
        assert(f(e()));
        if (r == 0) return 0;
        r += size;
        S sm = e();
        do {
            r--;
            while (r > 1 && (r % 2)) r >>= 1;
            if (!f(op(d[r], sm))) {
                while (r < size) {
                    r = (2 * r + 1);
                    if (f(op(d[r], sm))) {
                        sm = op(d[r], sm);
                        r--;
                    }
                }
                return r + 1 - size;
            }
            sm = op(d[r], sm);
        } while ((r & -r) != r);
        return 0;
    }

  private:
    int _n, size, log;
    std::vector<S> d;

    void update(int k) { d[k] = op(d[2 * k], d[2 * k + 1]); }

    int ceil_pow2(int n) {
        int x = 0;
        while ((1U << x) < (unsigned int)(n)) x++;
        return x;
    }
};

int n;
const int m=3000;

int a[3010];

modint Z[3010];
modint f(modint a,modint b){return a+b;}
modint e(){return 0;}

void calc(int d){
    rep(i,n-1){
        if(a[i]-a[i+1]>d) return;
    }
    SegmentTree<modint,f,e> dp(a[0]+1);
    dp.set_val(a[0],1);
    Rep(i,1,n-1){
        dp.set_val(a[i],dp.query(a[i+1]+1,min(a[0]+1,a[i+1]+d+1)));
    }
    Z[d]=dp.query(0,a[0]+1)*(modint)2;
}


void solve(){
    cin >> n;
    rep(i,n) cin >> a[n-i-1];
    Rep(i,1,m) calc(i);
    modint ans=0;
    Rep(i,1,m){
        ans+=(modint)i*(Z[i]-Z[i-1]);
    }
    cout << ans << endl;
}

int main(){
    ios::sync_with_stdio(false);
    cin.tie(0);
    cout << fixed << setprecision(50);
    solve();
}
0