結果

問題 No.1294 マウンテン数列
ユーザー Chanyuh
提出日時 2020-11-26 15:13:23
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 688 ms / 2,000 ms
コード長 6,914 bytes
コンパイル時間 2,109 ms
コンパイル使用メモリ 126,676 KB
最終ジャッジ日時 2025-01-16 05:49:41
ジャッジサーバーID
(参考情報)
judge5 / judge1
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
other AC * 17
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#include<iostream>
#include<array>
#include<string>
#include<cstdio>
#include<vector>
#include<cmath>
#include<algorithm>
#include<functional>
#include<iomanip>
#include<queue>
#include<ciso646>
#include<random>
#include<map>
#include<set>
#include<complex>
#include<bitset>
#include<stack>
#include<unordered_map>
#include<utility>
#include<tuple>
#include<cassert>
using namespace std;
typedef long long ll;
typedef unsigned int ui;
const ll mod = 998244353;
const ll INF = (ll)1000000007 * 1000000007;
typedef pair<int, int> P;
#define stop char nyaa;cin>>nyaa;
#define rep(i,n) for(int i=0;i<n;i++)
#define per(i,n) for(int i=n-1;i>=0;i--)
#define Rep(i,sta,n) for(int i=sta;i<n;i++)
#define Per(i,sta,n) for(int i=n-1;i>=sta;i--)
#define rep1(i,n) for(int i=1;i<=n;i++)
#define per1(i,n) for(int i=n;i>=1;i--)
#define Rep1(i,sta,n) for(int i=sta;i<=n;i++)
typedef long double ld;
const ld eps = 1e-8;
const ld pi = acos(-1.0);
typedef pair<ll, ll> LP;
int dx[4]={1,-1,0,0};
int dy[4]={0,0,1,-1};
template<class T>bool chmax(T &a, const T &b) {if(a<b){a=b;return 1;}return 0;}
template<class T>bool chmin(T &a, const T &b) {if(b<a){a=b;return 1;}return 0;}
template<int mod>
struct ModInt {
long long x;
static constexpr int MOD = mod;
ModInt() : x(0) {}
ModInt(long long y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}
explicit operator int() const {return x;}
ModInt &operator+=(const ModInt &p) {
if((x += p.x) >= mod) x -= mod;
return *this;
}
ModInt &operator-=(const ModInt &p) {
if((x += mod - p.x) >= mod) x -= mod;
return *this;
}
ModInt &operator*=(const ModInt &p) {
x = (int)(1LL * x * p.x % mod);
return *this;
}
ModInt &operator/=(const ModInt &p) {
*this *= p.inverse();
return *this;
}
ModInt operator-() const { return ModInt(-x); }
ModInt operator+(const ModInt &p) const { return ModInt(*this) += p; }
ModInt operator-(const ModInt &p) const { return ModInt(*this) -= p; }
ModInt operator*(const ModInt &p) const { return ModInt(*this) *= p; }
ModInt operator/(const ModInt &p) const { return ModInt(*this) /= p; }
ModInt operator%(const ModInt &p) const { return ModInt(0); }
bool operator==(const ModInt &p) const { return x == p.x; }
bool operator!=(const ModInt &p) const { return x != p.x; }
ModInt inverse() const{
int a = x, b = mod, u = 1, v = 0, t;
while(b > 0) {
t = a / b;
a -= t * b;
swap(a, b);
u -= t * v;
swap(u, v);
}
return ModInt(u);
}
ModInt power(long long n) const {
ModInt ret(1), mul(x);
while(n > 0) {
if(n & 1)
ret *= mul;
mul *= mul;
n >>= 1;
}
return ret;
}
ModInt power(const ModInt p) const{
return ((ModInt)x).power(p.x);
}
friend ostream &operator<<(ostream &os, const ModInt<mod> &p) {
return os << p.x;
}
friend istream &operator>>(istream &is, ModInt<mod> &a) {
long long x;
is >> x;
a = ModInt<mod>(x);
return (is);
}
};
using modint = ModInt<mod>;
template <class S, S (*op)(S, S), S (*e)()> struct SegmentTree {
public:
SegmentTree() : SegmentTree(0) {}
SegmentTree(int n) : SegmentTree(std::vector<S>(n, e())) {}
SegmentTree(const std::vector<S>& v) : _n(int(v.size())) {
log = ceil_pow2(_n);
size = 1 << log;
d = std::vector<S>(2 * size, e());
for (int i = 0; i < _n; i++) d[size + i] = v[i];
for (int i = size - 1; i >= 1; i--) {
update(i);
}
}
void set_val(int p, S x) {
assert(0 <= p && p < _n);
p += size;
d[p] = x;
for (int i = 1; i <= log; i++) update(p >> i);
}
S get(int p) {
assert(0 <= p && p < _n);
return d[p + size];
}
S query(int l, int r) {
assert(0 <= l && l <= r && r <= _n);
S sml = e(), smr = e();
l += size;
r += size;
while (l < r) {
if (l & 1) sml = op(sml, d[l++]);
if (r & 1) smr = op(d[--r], smr);
l >>= 1;
r >>= 1;
}
return op(sml, smr);
}
S all_query() { return d[1]; }
template <bool (*f)(S)> int max_right(int l) {//f(op([l,r)))==truer
return max_right(l, [](S x) { return f(x); });
}
template <class F> int max_right(int l, F f) {
assert(0 <= l && l <= _n);
assert(f(e()));
if (l == _n) return _n;
l += size;
S sm = e();
do {
while (l % 2 == 0) l >>= 1;
if (!f(op(sm, d[l]))) {
while (l < size) {
l = (2 * l);
if (f(op(sm, d[l]))) {
sm = op(sm, d[l]);
l++;
}
}
return l - size;
}
sm = op(sm, d[l]);
l++;
} while ((l & -l) != l);
return _n;
}
template <bool (*f)(S)> int min_left(int r) {//f(op([l,r)))==truel
return min_left(r, [](S x) { return f(x); });
}
template <class F> int min_left(int r, F f) {
assert(0 <= r && r <= _n);
assert(f(e()));
if (r == 0) return 0;
r += size;
S sm = e();
do {
r--;
while (r > 1 && (r % 2)) r >>= 1;
if (!f(op(d[r], sm))) {
while (r < size) {
r = (2 * r + 1);
if (f(op(d[r], sm))) {
sm = op(d[r], sm);
r--;
}
}
return r + 1 - size;
}
sm = op(d[r], sm);
} while ((r & -r) != r);
return 0;
}
private:
int _n, size, log;
std::vector<S> d;
void update(int k) { d[k] = op(d[2 * k], d[2 * k + 1]); }
int ceil_pow2(int n) {
int x = 0;
while ((1U << x) < (unsigned int)(n)) x++;
return x;
}
};
int n;
const int m=3000;
int a[3010];
modint Z[3010];
modint f(modint a,modint b){return a+b;}
modint e(){return 0;}
void calc(int d){
rep(i,n-1){
if(a[i]-a[i+1]>d) return;
}
SegmentTree<modint,f,e> dp(a[0]+1);
dp.set_val(a[0],1);
Rep(i,1,n-1){
dp.set_val(a[i],dp.query(a[i+1]+1,min(a[0]+1,a[i+1]+d+1)));
}
Z[d]=dp.query(0,a[0]+1)*(modint)2;
}
void solve(){
cin >> n;
rep(i,n) cin >> a[n-i-1];
Rep(i,1,m) calc(i);
modint ans=0;
Rep(i,1,m){
ans+=(modint)i*(Z[i]-Z[i-1]);
}
cout << ans << endl;
}
int main(){
ios::sync_with_stdio(false);
cin.tie(0);
cout << fixed << setprecision(50);
solve();
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0