結果
| 問題 |
No.1175 Simultaneous Equations
|
| コンテスト | |
| ユーザー |
Coki628
|
| 提出日時 | 2020-11-27 17:59:16 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
AC
|
| 実行時間 | 40 ms / 2,000 ms |
| コード長 | 1,562 bytes |
| コンパイル時間 | 221 ms |
| コンパイル使用メモリ | 82,648 KB |
| 実行使用メモリ | 54,424 KB |
| 最終ジャッジ日時 | 2024-07-23 21:38:53 |
| 合計ジャッジ時間 | 1,495 ms |
|
ジャッジサーバーID (参考情報) |
judge2 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 2 |
| other | AC * 11 |
ソースコード
import sys
def input(): return sys.stdin.readline().strip()
def list2d(a, b, c): return [[c] * b for i in range(a)]
def list3d(a, b, c, d): return [[[d] * c for k in range(b)] for i in range(a)]
def list4d(a, b, c, d, e): return [[[[e] * d for k in range(c)] for k in range(b)] for i in range(a)]
def ceil(x, y=1): return int(-(-x // y))
def INT(): return int(input())
def MAP(): return map(int, input().split())
def LIST(N=None): return list(MAP()) if N is None else [INT() for i in range(N)]
def Yes(): print('Yes')
def No(): print('No')
def YES(): print('YES')
def NO(): print('NO')
sys.setrecursionlimit(10**9)
INF = 10**19
MOD = 10**9 + 7
EPS = 10**-10
def gauss_jordan(A, b):
""" ガウス・ジョルダン法(連立方程式の解) """
N = len(A)
B = list2d(N, N+1, 0)
for i in range(N):
for j in range(N):
B[i][j] = A[i][j]
for i in range(N):
B[i][N] = b[i]
for i in range(N):
pivot = i
for j in range(i, N):
if abs(B[j][i]) > abs(B[pivot][i]):
pivot = j
B[i], B[pivot] = B[pivot], B[i]
if abs(B[i][i]) < EPS:
return []
for j in range(i+1, N+1):
B[i][j] /= B[i][i]
for j in range(N):
if i != j:
for k in range(i+1, N+1):
B[j][k] -= B[j][i] * B[i][k]
res = [0] * N
for i in range(N):
res[i] = B[i][N]
return res
a, b, c, d, e, f = MAP()
A = [
[a, b],
[d, e],
]
B = [c, f]
res = gauss_jordan(A, B)
print(*res)
Coki628