結果
| 問題 |
No.1045 直方体大学
|
| コンテスト | |
| ユーザー |
kissshot7
|
| 提出日時 | 2020-11-27 19:39:21 |
| 言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 3,573 bytes |
| コンパイル時間 | 2,257 ms |
| コンパイル使用メモリ | 176,372 KB |
| 実行使用メモリ | 35,424 KB |
| 最終ジャッジ日時 | 2024-07-23 21:44:01 |
| 合計ジャッジ時間 | 3,515 ms |
|
ジャッジサーバーID (参考情報) |
judge4 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 2 |
| other | AC * 15 WA * 2 |
ソースコード
#include <bits/stdc++.h>
using namespace std;
//#define int long long
typedef long long ll;
typedef unsigned long long ul;
typedef unsigned int ui;
const ll mod = 1000000007;
// const ll mod = 998244353;
const ll INF = mod * mod;
const int INF_N = 1e+9;
typedef pair<int, int> P;
#define rep(i,n) for(int i=0;i<n;i++)
#define per(i,n) for(int i=n-1;i>=0;i--)
#define Rep(i,sta,n) for(int i=sta;i<n;i++)
#define rep1(i,n) for(int i=1;i<=n;i++)
#define per1(i,n) for(int i=n;i>=1;i--)
#define Rep1(i,sta,n) for(int i=sta;i<=n;i++)
#define all(v) (v).begin(),(v).end()
typedef pair<ll, ll> LP;
typedef long double ld;
typedef pair<ld, ld> LDP;
const ld eps = 1e-12;
const ld pi = acos(-1.0);
//typedef vector<vector<ll>> mat;
typedef vector<int> vec;
//繰り返し二乗法
ll mod_pow(ll a, ll n, ll m) {
ll res = 1;
while (n) {
if (n & 1)res = res * a%m;
a = a * a%m; n >>= 1;
}
return res;
}
struct modint {
ll n;
modint() :n(0) { ; }
modint(ll m) :n(m) {
if (n >= mod)n %= mod;
else if (n < 0)n = (n%mod + mod) % mod;
}
operator int() { return n; }
};
bool operator==(modint a, modint b) { return a.n == b.n; }
modint operator+=(modint &a, modint b) { a.n += b.n; if (a.n >= mod)a.n -= mod; return a; }
modint operator-=(modint &a, modint b) { a.n -= b.n; if (a.n < 0)a.n += mod; return a; }
modint operator*=(modint &a, modint b) { a.n = ((ll)a.n*b.n) % mod; return a; }
modint operator+(modint a, modint b) { return a += b; }
modint operator-(modint a, modint b) { return a -= b; }
modint operator*(modint a, modint b) { return a *= b; }
modint operator^(modint a, int n) {
if (n == 0)return modint(1);
modint res = (a*a) ^ (n / 2);
if (n % 2)res = res * a;
return res;
}
//逆元(Eucledean algorithm)
ll inv(ll a, ll p) {
return (a == 1 ? 1 : (1 - p * inv(p%a, a)) / a + p);
}
modint operator/(modint a, modint b) { return a * modint(inv(b, mod)); }
const int max_n = 1 << 18;
modint fact[max_n], factinv[max_n];
void init_f() {
fact[0] = modint(1);
for (int i = 0; i < max_n - 1; i++) {
fact[i + 1] = fact[i] * modint(i + 1);
}
factinv[max_n - 1] = modint(1) / fact[max_n - 1];
for (int i = max_n - 2; i >= 0; i--) {
factinv[i] = factinv[i + 1] * modint(i + 1);
}
}
modint comb(int a, int b) {
if (a < 0 || b < 0 || a < b)return 0;
return fact[a] * factinv[b] * factinv[a - b];
}
using mP = pair<modint, modint>;
int dx[4] = { 0,1,0,-1 };
int dy[4] = { 1,0,-1,0 };
int n;
struct Box{
ll a, b, h;
Box(ll _a, ll _b, ll _h) : a(_a), b(_b), h(_h) {};
};
struct Bs{
ll a, b, c;
vector<Box> s;
Bs(ll _a, ll _b, ll _c) :a(_a), b(_b), c(_c) {
s.emplace_back(min(a, b), max(a, b), c);
s.emplace_back(min(b, c), max(b, c), a);
s.emplace_back(min(c, a), max(c, a), b);
}
};
bool check(Box x, Box y){
return x.a >= y.a && x.b >= y.b;
}
ll dp[(1<<16)+5][18][3];
vector<Bs> vr;
ll dfs(ll S, int pre, int bt){
if(pre != -1 && dp[S][pre][bt] != -1) return dp[S][pre][bt];
if(S == 1<<n - 1) return 0;
ll res = 0;
rep(i, n){
if(!(S>>i & 1)){
rep(j, 3){
if(pre == -1 || check(vr[pre].s[bt], vr[i].s[j])){
res = max(res, dfs((S | 1 << i), i, j) + vr[i].s[j].h);
}
}
}
}
if(pre != -1) dp[S][pre][bt] = res;
return res;
}
void solve() {
cin >> n;
memset(dp, -1, sizeof(dp));
rep(i, n){
ll a, b, c; cin >> a >> b >> c;
vr.emplace_back(a, b, c);
}
cout << dfs(0, -1, 0) << endl;
}
signed main() {
ios::sync_with_stdio(false);
cin.tie(0);
//cout << fixed << setprecision(10);
//init_f();
//init();
//int t; cin >> t; rep(i, t)solve();
solve();
// stop
return 0;
}
kissshot7