結果

問題 No.1301 Strange Graph Shortest Path
ユーザー risujirohrisujiroh
提出日時 2020-11-27 21:36:41
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 197 ms / 3,000 ms
コード長 6,552 bytes
コンパイル時間 2,592 ms
コンパイル使用メモリ 221,732 KB
実行使用メモリ 36,744 KB
最終ジャッジ日時 2024-09-13 00:50:47
合計ジャッジ時間 9,007 ms
ジャッジサーバーID
(参考情報)
judge3 / judge1
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
6,816 KB
testcase_01 AC 2 ms
6,940 KB
testcase_02 AC 143 ms
36,744 KB
testcase_03 AC 117 ms
32,132 KB
testcase_04 AC 178 ms
34,776 KB
testcase_05 AC 128 ms
35,324 KB
testcase_06 AC 161 ms
32,484 KB
testcase_07 AC 146 ms
34,564 KB
testcase_08 AC 123 ms
32,412 KB
testcase_09 AC 130 ms
30,840 KB
testcase_10 AC 120 ms
32,140 KB
testcase_11 AC 152 ms
33,436 KB
testcase_12 AC 154 ms
33,432 KB
testcase_13 AC 134 ms
35,576 KB
testcase_14 AC 159 ms
30,888 KB
testcase_15 AC 134 ms
31,920 KB
testcase_16 AC 177 ms
34,604 KB
testcase_17 AC 159 ms
36,456 KB
testcase_18 AC 144 ms
33,084 KB
testcase_19 AC 139 ms
32,636 KB
testcase_20 AC 160 ms
31,448 KB
testcase_21 AC 152 ms
34,768 KB
testcase_22 AC 170 ms
32,356 KB
testcase_23 AC 141 ms
36,572 KB
testcase_24 AC 165 ms
32,144 KB
testcase_25 AC 161 ms
34,708 KB
testcase_26 AC 152 ms
33,416 KB
testcase_27 AC 140 ms
33,312 KB
testcase_28 AC 124 ms
35,296 KB
testcase_29 AC 197 ms
34,180 KB
testcase_30 AC 148 ms
34,628 KB
testcase_31 AC 162 ms
34,184 KB
testcase_32 AC 2 ms
6,940 KB
testcase_33 AC 98 ms
29,424 KB
testcase_34 AC 148 ms
36,440 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>

namespace atcoder {

template <class Cap, class Cost>
struct mcf_graph {
 public:
  mcf_graph() {}
  mcf_graph(int n) : _n(n), g(n) {}

  int add_edge(int from, int to, Cap cap, Cost cost) {
    assert(0 <= from && from < _n);
    assert(0 <= to && to < _n);
    int m = int(pos.size());
    pos.push_back({from, int(g[from].size())});
    int from_id = int(g[from].size());
    int to_id = int(g[to].size());
    if (from == to) to_id++;
    g[from].push_back(_edge{to, to_id, cap, cost});
    g[to].push_back(_edge{from, from_id, 0, -cost});
    return m;
  }

  struct edge {
    int from, to;
    Cap cap, flow;
    Cost cost;
  };

  edge get_edge(int i) {
    int m = int(pos.size());
    assert(0 <= i && i < m);
    auto _e = g[pos[i].first][pos[i].second];
    auto _re = g[_e.to][_e.rev];
    return edge{
        pos[i].first, _e.to, _e.cap + _re.cap, _re.cap, _e.cost,
    };
  }
  std::vector<edge> edges() {
    int m = int(pos.size());
    std::vector<edge> result(m);
    for (int i = 0; i < m; i++) {
      result[i] = get_edge(i);
    }
    return result;
  }

  std::pair<Cap, Cost> flow(int s, int t) {
    return flow(s, t, std::numeric_limits<Cap>::max());
  }
  std::pair<Cap, Cost> flow(int s, int t, Cap flow_limit) {
    return slope(s, t, flow_limit).back();
  }
  std::vector<std::pair<Cap, Cost>> slope(int s, int t) {
    return slope(s, t, std::numeric_limits<Cap>::max());
  }
  std::vector<std::pair<Cap, Cost>> slope(int s, int t, Cap flow_limit) {
    assert(0 <= s && s < _n);
    assert(0 <= t && t < _n);
    assert(s != t);
    // variants (C = maxcost):
    // -(n-1)C <= dual[s] <= dual[i] <= dual[t] = 0
    // reduced cost (= e.cost + dual[e.from] - dual[e.to]) >= 0 for all edge
    std::vector<Cost> dual(_n, 0), dist(_n);
    std::vector<int> pv(_n), pe(_n);
    std::vector<bool> vis(_n);
    auto dual_ref = [&]() {
      std::fill(dist.begin(), dist.end(), std::numeric_limits<Cost>::max());
      std::fill(pv.begin(), pv.end(), -1);
      std::fill(pe.begin(), pe.end(), -1);
      std::fill(vis.begin(), vis.end(), false);
      struct Q {
        Cost key;
        int to;
        bool operator<(Q r) const { return key > r.key; }
      };
      std::priority_queue<Q> que;
      dist[s] = 0;
      que.push(Q{0, s});
      while (!que.empty()) {
        int v = que.top().to;
        que.pop();
        if (vis[v]) continue;
        vis[v] = true;
        if (v == t) break;
        // dist[v] = shortest(s, v) + dual[s] - dual[v]
        // dist[v] >= 0 (all reduced cost are positive)
        // dist[v] <= (n-1)C
        for (int i = 0; i < int(g[v].size()); i++) {
          auto e = g[v][i];
          if (vis[e.to] || !e.cap) continue;
          // |-dual[e.to] + dual[v]| <= (n-1)C
          // cost <= C - -(n-1)C + 0 = nC
          Cost cost = e.cost - dual[e.to] + dual[v];
          if (dist[e.to] - dist[v] > cost) {
            dist[e.to] = dist[v] + cost;
            pv[e.to] = v;
            pe[e.to] = i;
            que.push(Q{dist[e.to], e.to});
          }
        }
      }
      if (!vis[t]) {
        return false;
      }

      for (int v = 0; v < _n; v++) {
        if (!vis[v]) continue;
        // dual[v] = dual[v] - dist[t] + dist[v]
        //         = dual[v] - (shortest(s, t) + dual[s] - dual[t]) +
        //         (shortest(s, v) + dual[s] - dual[v]) = - shortest(s, t) +
        //         dual[t] + shortest(s, v) = shortest(s, v) - shortest(s, t) >=
        //         0 - (n-1)C
        dual[v] -= dist[t] - dist[v];
      }
      return true;
    };
    Cap flow = 0;
    Cost cost = 0, prev_cost_per_flow = -1;
    std::vector<std::pair<Cap, Cost>> result;
    result.push_back({flow, cost});
    while (flow < flow_limit) {
      if (!dual_ref()) break;
      Cap c = flow_limit - flow;
      for (int v = t; v != s; v = pv[v]) {
        c = std::min(c, g[pv[v]][pe[v]].cap);
      }
      for (int v = t; v != s; v = pv[v]) {
        auto& e = g[pv[v]][pe[v]];
        e.cap -= c;
        g[v][e.rev].cap += c;
      }
      Cost d = -dual[s];
      flow += c;
      cost += c * d;
      if (prev_cost_per_flow == d) {
        result.pop_back();
      }
      result.push_back({flow, cost});
      prev_cost_per_flow = d;
    }
    return result;
  }

 private:
  int _n;

  struct _edge {
    int to, rev;
    Cap cap;
    Cost cost;
  };

  std::vector<std::pair<int, int>> pos;
  std::vector<std::vector<_edge>> g;
};

}  // namespace atcoder

#pragma region my_template

struct Rep {
  struct I {
    int i;
    void operator++() { ++i; }
    int operator*() const { return i; }
    bool operator!=(I o) const { return i < *o; }
  };
  const int l_, r_;
  Rep(int l, int r) : l_(l), r_(r) {}
  Rep(int n) : Rep(0, n) {}
  I begin() const { return {l_}; }
  I end() const { return {r_}; }
};
struct Per {
  struct I {
    int i;
    void operator++() { --i; }
    int operator*() const { return i; }
    bool operator!=(I o) const { return i > *o; }
  };
  const int l_, r_;
  Per(int l, int r) : l_(l), r_(r) {}
  Per(int n) : Per(0, n) {}
  I begin() const { return {r_ - 1}; }
  I end() const { return {l_ - 1}; }
};

template <class F>
struct Fix : private F {
  Fix(F f) : F(f) {}
  template <class... Args>
  decltype(auto) operator()(Args&&... args) const {
    return F::operator()(*this, std::forward<Args>(args)...);
  }
};

template <class T = int>
T scan() {
  T res;
  std::cin >> res;
  return res;
}

template <class T, class U = T>
bool chmin(T& a, U&& b) {
  return b < a ? a = std::forward<U>(b), true : false;
}
template <class T, class U = T>
bool chmax(T& a, U&& b) {
  return a < b ? a = std::forward<U>(b), true : false;
}

#ifndef LOCAL
#define DUMP(...) void(0)
template <int OnlineJudge, int Local>
constexpr int OjLocal = OnlineJudge;
#endif

using namespace std;

#define ALL(c) begin(c), end(c)

#pragma endregion

int main() {
  cin.tie(nullptr)->sync_with_stdio(false);
  cout << fixed << setprecision(20);
  int n = scan();
  atcoder::mcf_graph<int, int64_t> g(n);
  for (int m = scan(); m--;) {
    int u = scan() - 1;
    int v = scan() - 1;
    int c = scan();
    int d = scan();
    g.add_edge(u, v, 1, c);
    g.add_edge(v, u, 1, c);
    g.add_edge(u, v, 1, d);
    g.add_edge(v, u, 1, d);
  }
  cout << g.flow(0, n - 1, 2).second << '\n';
}
0