結果
| 問題 |
No.1301 Strange Graph Shortest Path
|
| コンテスト | |
| ユーザー |
emthrm
|
| 提出日時 | 2020-11-27 21:57:03 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 3,371 bytes |
| コンパイル時間 | 2,103 ms |
| コンパイル使用メモリ | 218,244 KB |
| 最終ジャッジ日時 | 2025-01-16 07:10:06 |
|
ジャッジサーバーID (参考情報) |
judge3 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 2 |
| other | AC * 28 WA * 5 |
ソースコード
#define _USE_MATH_DEFINES
#include <bits/stdc++.h>
using namespace std;
#define FOR(i,m,n) for(int i=(m);i<(n);++i)
#define REP(i,n) FOR(i,0,n)
#define ALL(v) (v).begin(),(v).end()
using ll = long long;
constexpr int INF = 0x3f3f3f3f;
constexpr long long LINF = 0x3f3f3f3f3f3f3f3fLL;
constexpr double EPS = 1e-8;
constexpr int MOD = 1000000007;
// constexpr int MOD = 998244353;
constexpr int dy[] = {1, 0, -1, 0}, dx[] = {0, -1, 0, 1};
constexpr int dy8[] = {1, 1, 0, -1, -1, -1, 0, 1}, dx8[] = {0, -1, -1, -1, 0, 1, 1, 1};
template <typename T, typename U> inline bool chmax(T &a, U b) { return a < b ? (a = b, true) : false; }
template <typename T, typename U> inline bool chmin(T &a, U b) { return a > b ? (a = b, true) : false; }
struct IOSetup {
IOSetup() {
std::cin.tie(nullptr);
std::ios_base::sync_with_stdio(false);
std::cout << fixed << setprecision(20);
}
} iosetup;
template <typename CostType>
struct Edge {
int src, dst; CostType cost;
Edge(int src, int dst, CostType cost = 0) : src(src), dst(dst), cost(cost) {}
inline bool operator<(const Edge &x) const {
return cost != x.cost ? cost < x.cost : dst != x.dst ? dst < x.dst : src < x.src;
}
inline bool operator<=(const Edge &x) const { return !(x < *this); }
inline bool operator>(const Edge &x) const { return x < *this; }
inline bool operator>=(const Edge &x) const { return !(*this < x); }
};
template <typename CostType>
struct Dijkstra {
Dijkstra(const std::vector<std::vector<Edge<CostType>>> &graph, const CostType CINF) : graph(graph), CINF(CINF) {}
std::vector<CostType> build(int s) {
is_built = true;
int n = graph.size();
std::vector<CostType> dist(n, CINF);
dist[s] = 0;
prev.assign(n, -1);
using Pci = std::pair<CostType, int>;
std::priority_queue<Pci, std::vector<Pci>, std::greater<Pci>> que;
que.emplace(0, s);
while (!que.empty()) {
CostType cost; int ver; std::tie(cost, ver) = que.top(); que.pop();
if (dist[ver] < cost) continue;
for (const Edge<CostType> &e : graph[ver]) {
if (dist[e.dst] > dist[ver] + e.cost) {
dist[e.dst] = dist[ver] + e.cost;
prev[e.dst] = ver;
que.emplace(dist[e.dst], e.dst);
}
}
}
return dist;
}
std::vector<int> build_path(int t) const {
assert(is_built);
std::vector<int> res;
for (; t != -1; t = prev[t]) res.emplace_back(t);
std::reverse(res.begin(), res.end());
return res;
}
private:
bool is_built = false;
std::vector<std::vector<Edge<CostType>>> graph;
const CostType CINF;
std::vector<int> prev;
};
int main() {
int n, m; cin >> n >> m;
vector<vector<Edge<ll>>> graph(n);
map<pair<int, int>, int> mp;
vector<int> d(m);
REP(i, m) {
int u, v, c; cin >> u >> v >> c >> d[i]; --u; --v;
graph[u].emplace_back(u, v, c);
graph[v].emplace_back(v, u, c);
mp[{u, v}] = i;
}
Dijkstra dij(graph, LINF);
ll ans = dij.build(0)[n - 1];
vector<int> path = dij.build_path(n - 1);
for (int i = 0; i + 1 < path.size(); ++i) {
int u = path[i], v = path[i + 1];
if (u > v) swap(u, v);
for (auto &e : graph[u]) {
if (e.dst == v) e.cost = d[mp[{u, v}]];
}
for (auto &e : graph[v]) {
if (e.dst == u) e.cost = d[mp[{u, v}]];
}
}
cout << ans + Dijkstra(graph, LINF).build(0)[n - 1] << '\n';
return 0;
}
emthrm