結果
| 問題 |
No.1301 Strange Graph Shortest Path
|
| コンテスト | |
| ユーザー |
minato
|
| 提出日時 | 2020-11-27 21:59:54 |
| 言語 | C++17(gcc12) (gcc 12.3.0 + boost 1.87.0) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 5,599 bytes |
| コンパイル時間 | 19,478 ms |
| コンパイル使用メモリ | 304,516 KB |
| 最終ジャッジ日時 | 2025-01-16 07:15:53 |
|
ジャッジサーバーID (参考情報) |
judge1 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 2 |
| other | AC * 28 WA * 5 |
ソースコード
#ifdef ONLINE_JUDGE
#pragma GCC target("avx2,avx")
#pragma GCC optimize("O3")
#pragma GCC optimize("unroll-loops")
#endif
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
using ull = unsigned long long;
using i128 = __int128_t;
using pii = pair<int, int>;
using pll = pair<long long, long long>;
#define rep(i, n) for (int i = 0; i < (n); i++)
#define rrep(i, n) for (int i = int(n) - 1; i >= 0; i--)
#define all(x) (x).begin(), (x).end()
constexpr char ln = '\n';
istream& operator>>(istream& is, __int128_t& x) {
x = 0;
string s;
is >> s;
int n = int(s.size()), it = 0;
if (s[0] == '-') it++;
for (; it < n; it++) x = (x * 10 + s[it] - '0');
if (s[0] == '-') x = -x;
return is;
}
ostream& operator<<(ostream& os, __int128_t x) {
if (x == 0) return os << 0;
if (x < 0) os << '-', x = -x;
deque<int> deq;
while (x) deq.emplace_front(x % 10), x /= 10;
for (int e : deq) os << e;
return os;
}
template<class T1, class T2>
ostream& operator<<(ostream& os, const pair<T1, T2>& p) {
return os << "(" << p.first << ", " << p.second << ")";
}
template<class T>
ostream& operator<<(ostream& os, const vector<T>& v) {
os << "{";
for (int i = 0; i < int(v.size()); i++) {
if (i) os << ", ";
os << v[i];
}
return os << "}";
}
template<class Container> inline int SZ(Container& v) { return int(v.size()); }
template<class T> inline void UNIQUE(vector<T>& v) { v.erase(unique(v.begin(), v.end()), v.end()); }
template<class T1, class T2> inline bool chmax(T1& a, T2 b) { if (a < b) {a = b; return true ;} return false ;}
template<class T1, class T2> inline bool chmin(T1& a, T2 b) { if (a > b) {a = b; return true ;} return false ;}
inline int topbit(ull x) { return x == 0 ? -1 : 63 - __builtin_clzll(x); }
inline int botbit(ull x) { return x == 0 ? 64 : __builtin_ctzll(x); }
inline int popcount(ull x) { return __builtin_popcountll(x); }
inline int kthbit(ull x, int k) { return (x>>k) & 1; }
inline constexpr long long TEN(int x) { return x == 0 ? 1 : TEN(x-1) * 10; }
inline void print() { cout << "\n"; }
template<class T>
inline void print(const vector<T>& v) {
for (int i = 0; i < int(v.size()); i++) {
if (i) cout << " ";
cout << v[i];
}
print();
}
template<class T, class... Args>
inline void print(const T& x, const Args& ... args) {
cout << x << " ";
print(args...);
}
#ifdef MINATO_LOCAL
inline void debug_out() { cerr << endl; }
template <class T, class... Args>
inline void debug_out(const T& x, const Args& ... args) {
cerr << " " << x;
debug_out(args...);
}
#define debug(...) cerr << __LINE__ << " : [" << #__VA_ARGS__ << "] =", debug_out(__VA_ARGS__)
#define dump(x) cerr << __LINE__ << " : " << #x << " = " << (x) << endl
#else
#define debug(...) (void(0))
#define dump(x) (void(0))
#endif
struct fast_ios { fast_ios() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(20); }; } fast_ios_;
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
template<typename Int>
struct Dijkstra {
struct Edge {
int to;
Int cost;
Edge (int to, Int cost) : to(to), cost(cost) {}
bool operator<(const Edge& o) const { return cost > o.cost; }
};
int n;
Int INF;
vector<vector<Edge>> g;
vector<Int> dist;
vector<int> from;
Dijkstra() {}
Dijkstra(int n, Int INF) : n(n), INF(INF), g(n), dist(n), from(n) {}
void add_edge(int u, int v, Int cost) {
assert(0 <= u and u < n);
assert(0 <= v and v < n);
g[u].emplace_back(v,cost);
}
void build(int s = 0) {
fill(dist.begin(), dist.end(), INF);
fill(from.begin(), from.end(), -1);
dist[s] = 0;
priority_queue<Edge> pq;
pq.emplace(s, dist[s]);
while (!pq.empty()) {
Edge t = pq.top(); pq.pop();
int v = t.to;
Int d = t.cost;
if (d > dist[v]) continue;
for (Edge& e : g[v]) {
if (dist[e.to] > d + e.cost) {
dist[e.to] = d + e.cost;
from[e.to] = v;
pq.emplace(e.to, dist[e.to]);
}
}
}
}
Int operator[](int k) { return dist[k]; }
vector<int> restore(int to) {
vector<int> ret;
if (from[to] == -1) return ret;
while (~to) {
ret.emplace_back(to);
to = from[to];
}
reverse(ret.begin(), ret.end());
return ret;
}
};
using Tu = tuple<int, int, ll, ll>;
constexpr ll INF = 1e18;
int main() {
int N,M; cin >> N >> M;
vector<Tu> E(M);
rep(i,M) {
int a,b,c,d; cin >> a >> b >> c >> d;
a--; b--;
E[i] = Tu(a,b,c,d);
}
Dijkstra<ll> g1(N,INF);
rep(i,M) {
auto[a,b,c,d] = E[i];
g1.add_edge(a,b,c);
g1.add_edge(b,a,c);
}
g1.build();
ll ans = g1[N-1];
auto path = g1.restore(N-1);
set<pii> dic;
rep(i,SZ(path)-1) {
int u = path[i];
int v = path[i+1];
if (u > v) swap(u,v);
dic.emplace(u,v);
}
Dijkstra<ll> g2(N,INF);
rep(i,M) {
auto[a,b,c,d] = E[i];
if (a > b) swap(a,b);
if (dic.count(pii(a,b))) {
g2.add_edge(a,b,d);
g2.add_edge(b,a,d);
} else {
g2.add_edge(a,b,c);
g2.add_edge(b,a,c);
}
}
g2.build();
ans += g2[N-1];
cout << ans << ln;
}
minato