結果
問題 | No.1301 Strange Graph Shortest Path |
ユーザー | Mister |
提出日時 | 2020-11-27 22:11:43 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 346 ms / 3,000 ms |
コード長 | 5,246 bytes |
コンパイル時間 | 1,655 ms |
コンパイル使用メモリ | 96,864 KB |
最終ジャッジ日時 | 2025-01-16 07:33:26 |
ジャッジサーバーID (参考情報) |
judge1 / judge4 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 2 |
other | AC * 33 |
ソースコード
#include <algorithm> #include <cassert> #include <limits> #include <queue> #include <vector> namespace atcoder { template <class Cap, class Cost> struct mcf_graph { public: mcf_graph() {} mcf_graph(int n) : _n(n), g(n) {} int add_edge(int from, int to, Cap cap, Cost cost) { assert(0 <= from && from < _n); assert(0 <= to && to < _n); assert(0 <= cap); assert(0 <= cost); int m = int(pos.size()); pos.push_back({from, int(g[from].size())}); int from_id = int(g[from].size()); int to_id = int(g[to].size()); if (from == to) to_id++; g[from].push_back(_edge{to, to_id, cap, cost}); g[to].push_back(_edge{from, from_id, 0, -cost}); return m; } struct edge { int from, to; Cap cap, flow; Cost cost; }; edge get_edge(int i) { int m = int(pos.size()); assert(0 <= i && i < m); auto _e = g[pos[i].first][pos[i].second]; auto _re = g[_e.to][_e.rev]; return edge{ pos[i].first, _e.to, _e.cap + _re.cap, _re.cap, _e.cost, }; } std::vector<edge> edges() { int m = int(pos.size()); std::vector<edge> result(m); for (int i = 0; i < m; i++) { result[i] = get_edge(i); } return result; } std::pair<Cap, Cost> flow(int s, int t) { return flow(s, t, std::numeric_limits<Cap>::max()); } std::pair<Cap, Cost> flow(int s, int t, Cap flow_limit) { return slope(s, t, flow_limit).back(); } std::vector<std::pair<Cap, Cost>> slope(int s, int t) { return slope(s, t, std::numeric_limits<Cap>::max()); } std::vector<std::pair<Cap, Cost>> slope(int s, int t, Cap flow_limit) { assert(0 <= s && s < _n); assert(0 <= t && t < _n); assert(s != t); std::vector<Cost> dual(_n, 0), dist(_n); std::vector<int> pv(_n), pe(_n); std::vector<bool> vis(_n); struct Q { Cost key; int to; bool operator<(Q r) const { return key > r.key; } }; std::vector<Q> que; auto dual_ref = [&]() { std::fill(dist.begin(), dist.end(), std::numeric_limits<Cost>::max()); std::fill(vis.begin(), vis.end(), false); que.clear(); dist[s] = 0; que.push_back(Q{0, s}); std::push_heap(que.begin(), que.end()); while (!que.empty()) { int v = que.front().to; std::pop_heap(que.begin(), que.end()); que.pop_back(); if (vis[v]) continue; vis[v] = true; if (v == t) break; for (int i = 0; i < int(g[v].size()); i++) { auto e = g[v][i]; if (vis[e.to] || !e.cap) continue; Cost cost = e.cost - dual[e.to] + dual[v]; if (dist[e.to] - dist[v] > cost) { dist[e.to] = dist[v] + cost; pv[e.to] = v; pe[e.to] = i; que.push_back(Q{dist[e.to], e.to}); std::push_heap(que.begin(), que.end()); } } } if (!vis[t]) { return false; } for (int v = 0; v < _n; v++) { if (!vis[v]) continue; dual[v] -= dist[t] - dist[v]; } return true; }; Cap flow = 0; Cost cost = 0, prev_cost_per_flow = -1; std::vector<std::pair<Cap, Cost>> result; result.push_back({flow, cost}); while (flow < flow_limit) { if (!dual_ref()) break; Cap c = flow_limit - flow; for (int v = t; v != s; v = pv[v]) { c = std::min(c, g[pv[v]][pe[v]].cap); } for (int v = t; v != s; v = pv[v]) { auto& e = g[pv[v]][pe[v]]; e.cap -= c; g[v][e.rev].cap += c; } Cost d = -dual[s]; flow += c; cost += c * d; if (prev_cost_per_flow == d) { result.pop_back(); } result.push_back({flow, cost}); prev_cost_per_flow = d; } return result; } private: int _n; struct _edge { int to, rev; Cap cap; Cost cost; }; std::vector<std::pair<int, int>> pos; std::vector<std::vector<_edge>> g; }; } // namespace atcoder #include <iostream> #include <vector> using lint = long long; using namespace std; void solve() { int n, m; cin >> n >> m; atcoder::mcf_graph<int, lint> graph(n); while (m--) { int u, v; cin >> u >> v; --u, --v; for (int q = 0; q < 2; ++q) { lint c; cin >> c; graph.add_edge(u, v, 1, c); graph.add_edge(v, u, 1, c); } } cout << graph.flow(0, n - 1, 2).second << "\n"; } int main() { cin.tie(nullptr); ios::sync_with_stdio(false); solve(); return 0; }