結果

問題 No.1302 Random Tree Score
ユーザー uwiuwi
提出日時 2020-11-27 22:18:03
言語 Java21
(openjdk 21)
結果
AC  
実行時間 1,615 ms / 3,000 ms
コード長 22,085 bytes
コンパイル時間 6,792 ms
コンパイル使用メモリ 94,112 KB
実行使用メモリ 79,916 KB
最終ジャッジ日時 2024-07-26 13:18:21
合計ジャッジ時間 23,326 ms
ジャッジサーバーID
(参考情報)
judge2 / judge3
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 74 ms
51,104 KB
testcase_01 AC 75 ms
51,112 KB
testcase_02 AC 573 ms
63,904 KB
testcase_03 AC 941 ms
68,212 KB
testcase_04 AC 587 ms
63,572 KB
testcase_05 AC 1,559 ms
76,272 KB
testcase_06 AC 1,611 ms
76,532 KB
testcase_07 AC 569 ms
64,416 KB
testcase_08 AC 941 ms
69,236 KB
testcase_09 AC 1,588 ms
78,024 KB
testcase_10 AC 1,545 ms
76,732 KB
testcase_11 AC 578 ms
61,620 KB
testcase_12 AC 1,564 ms
79,916 KB
testcase_13 AC 76 ms
51,208 KB
testcase_14 AC 1,588 ms
78,604 KB
testcase_15 AC 1,615 ms
78,588 KB
testcase_16 AC 76 ms
51,200 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

package contest201127;
import java.io.*;
import java.util.ArrayDeque;
import java.util.Arrays;
import java.util.InputMismatchException;
import java.util.Queue;

public class E2 {
	InputStream is;
	FastWriter out;

	String INPUT = "";

	public void solve()
	{
		int n = ni();
		final int mod = 998244353;

		int[][] fif = enumFIF(n);
		long[] a = new long[n-1];
		for(int i = 1;i <= n-1;i++){
			a[i-1] = (long)fif[1][i-1] * i % mod;
		}
		// 2n-2 - n
		long[] b = pow(a, n);
		out.println(b[n-2] * fif[0][n-2] % mod * invl(pow(n, n-2, mod), mod) % mod);
	}

	public static long[] powNaive(long[] a, int K)
	{
		int n = a.length;
		long[] ret = {1};
		for(int d = 31-Integer.numberOfLeadingZeros(K);d >= 0;d--) {
			ret = mul(ret, ret, n);
			if(K<<~d<0) {
				ret = mul(ret, a, n);
			}
		}
		return ret;
	}


	public static long invl(long a, long mod) {
		long b = mod;
		long p = 1, q = 0;
		while (b > 0) {
			long c = a / b;
			long d;
			d = a;
			a = b;
			b = d % b;
			d = p;
			p = q;
			q = d - c * q;
		}
		return p < 0 ? p + mod : p;
	}


	public static long pow(long a, long n, long mod) {
		//		a %= mod;
		long ret = 1;
		int x = 63 - Long.numberOfLeadingZeros(n);
		for (; x >= 0; x--) {
			ret = ret * ret % mod;
			if (n << 63 - x < 0) ret = ret * a % mod;
		}
		return ret;
	}


	public static final int mod = 998244353;
	public static final int G = 3;

	// only 998244353
	public static long[] mul(long[] a, long[] b)
	{
		return Arrays.copyOf(convoluteSimply(a, b, mod, 3), a.length+b.length-1);
	}

	public static long[] mul(long[] a, long[] b, int lim)
	{
		return Arrays.copyOf(convoluteSimply(a, b, mod, 3), lim);
	}

	//	public static final int mod = 1000000007;
	//	public static long[] mul(long[] a, long[] b)
	//	{
	//		if(Math.max(a.length, b.length) >= 3000){
	//			return Arrays.copyOf(NTTCRT.convolute(a, b, 3, mod), a.length+b.length-1);
	//		}else{
	//			return mulnaive(a, b);
	//		}
	//	}

	//	public static long[] mul(long[] a, long[] b, int lim)
	//	{
	//		if(Math.max(a.length, b.length) >= 3000){
	//			return Arrays.copyOf(NTTCRT.convolute(a, b, 3, mod), lim);
	//		}else{
	//			return mulnaive(a, b, lim);
	//		}
	//	}

	public static final long big = (Long.MAX_VALUE/mod/mod-1)*mod*mod;

	public static long[] mulnaive(long[] a, long[] b)
	{
		long[] c = new long[a.length+b.length-1];
		for(int i = 0;i < a.length;i++){
			for(int j = 0;j < b.length;j++){
				c[i+j] += a[i]*b[j];
				if(c[i+j] >= big)c[i+j] -= big;
			}
		}
		for(int i = 0;i < c.length;i++)c[i] %= mod;
		return c;
	}

	public static long[] mulnaive(long[] a, long[] b, int lim)
	{
		long[] c = new long[lim];
		for(int i = 0;i < a.length;i++){
			for(int j = 0;j < b.length && i+j < lim;j++){
				c[i+j] += a[i]*b[j];
				if(c[i+j] >= big)c[i+j] -= big;
			}
		}
		for(int i = 0;i < c.length;i++)c[i] %= mod;
		return c;
	}

	public static long[] mul_(long[] a, long k)
	{
		for(int i = 0;i < a.length;i++)a[i] = a[i] * k % mod;
		return a;
	}

	public static long[] mul(long[] a, long k)
	{
		a = Arrays.copyOf(a, a.length);
		for(int i = 0;i < a.length;i++)a[i] = a[i] * k % mod;
		return a;
	}

	public static long[] add(long[] a, long[] b)
	{
		long[] c = new long[Math.max(a.length, b.length)];
		for(int i = 0;i < a.length;i++)c[i] += a[i];
		for(int i = 0;i < b.length;i++)c[i] += b[i];
		for(int i = 0;i < c.length;i++)if(c[i] >= mod)c[i] -= mod;
		return c;
	}

	public static long[] add(long[] a, long[] b, int lim)
	{
		long[] c = new long[lim];
		for(int i = 0;i < a.length && i < lim;i++)c[i] += a[i];
		for(int i = 0;i < b.length && i < lim;i++)c[i] += b[i];
		for(int i = 0;i < c.length;i++)if(c[i] >= mod)c[i] -= mod;
		return c;
	}

	public static long[] sub(long[] a, long[] b)
	{
		long[] c = new long[Math.max(a.length, b.length)];
		for(int i = 0;i < a.length;i++)c[i] += a[i];
		for(int i = 0;i < b.length;i++)c[i] -= b[i];
		for(int i = 0;i < c.length;i++)if(c[i] < 0)c[i] += mod;
		return c;
	}

	public static long[] sub(long[] a, long[] b, int lim)
	{
		long[] c = new long[lim];
		for(int i = 0;i < a.length && i < lim;i++)c[i] += a[i];
		for(int i = 0;i < b.length && i < lim;i++)c[i] -= b[i];
		for(int i = 0;i < c.length;i++)if(c[i] < 0)c[i] += mod;
		return c;
	}

	// F_{t+1}(x) = -F_t(x)^2*P(x) + 2F_t(x)
	// if want p-destructive, comment out flipping p just before returning.
	public static long[] inv(long[] p)
	{
		int n = p.length;
		long[] f = {invl(p[0], mod)};
		for(int i = 0;i < p.length;i++){
			if(p[i] == 0)continue;
			p[i] = mod-p[i];
		}
		for(int i = 1;i < 2*n;i*=2){
			long[] f2 = mul(f, f, Math.min(n, 2*i));
			long[] f2p = mul(f2, Arrays.copyOf(p, i), Math.min(n, 2*i));
			for(int j = 0;j < f.length;j++){
				f2p[j] += 2L*f[j];
				if(f2p[j] >= mod)f2p[j] -= mod;
				if(f2p[j] >= mod)f2p[j] -= mod;
			}
			f = f2p;
		}
		for(int i = 0;i < p.length;i++){
			if(p[i] == 0)continue;
			p[i] = mod-p[i];
		}
		return f;
	}

	// differentiate
	public static long[] d(long[] p)
	{
		long[] q = new long[p.length];
		for(int i = 0;i < p.length-1;i++){
			q[i] = p[i+1] * (i+1) % mod;
		}
		return q;
	}

	// integrate
	public static long[] i(long[] p)
	{
		long[] q = new long[p.length];
		for(int i = 0;i < p.length-1;i++){
			q[i+1] = p[i] * invl(i+1, mod) % mod;
		}
		return q;
	}

	static long[] exp(long[] a) { return exp(a, a.length); }

	/**
	 * https://cs.uwaterloo.ca/~eschost/publications/BoSc09-final.pdf
	 * @verified https://judge.yosupo.jp/problem/exp_of_formal_power_series
	 * @param a
	 * @param lim
	 * @return
	 */
	static long[] exp(long[] a, int lim)
	{
		long[] F = {1L};
		long[] G = {1L};
		long[] da = d(a);
		for(int m = 1;;m *= 2) {
			long[] G2 = mul(G, G, m);
			G = sub(mul_(G, 2), mul(F, G2, m));
			long[] Q = Arrays.copyOf(da, m-1);
			long[] W = add(Q, mul(G, sub(d(F), mul(F, Q, m), m-1)));
			F = mul(F, add(new long[] {1}, sub(Arrays.copyOf(a, m), i(W))), m);
			if(m >= lim)break;
		}
		return Arrays.copyOf(F, lim);
	}
	//
	//	// F_{t+1}(x) = F_t(x)-(ln F_t(x) - P(x)) * F_t(x)
	//	public static long[] exp(long[] p)
	//	{
	//		int n = p.length;
	//		long[] f = {p[0]};
	//		for(int i = 1;i < 2*n;i*=2){
	//			long[] ii = ln(f);
	//			long[] sub = sub(ii, p, Math.min(n, 2*i));
	//			if(--sub[0] < 0)sub[0] += mod;
	//			for(int j = 0;j < 2*i && j < n;j++){
	//				sub[j] = mod-sub[j];
	//				if(sub[j] == mod)sub[j] = 0;
	//			}
	//			f = mul(sub, f, Math.min(n, 2*i));
	////			f = sub(f, mul(sub(ii, p, 2*i), f, 2*i));
	//		}
	//		return f;
	//	}

	// \int f'(x)/f(x) dx
	public static long[] ln(long[] f)
	{
		return i(mul(d(f), inv(f)));
	}

	// ln F(x) - k ln P(x) = 0
	public static long[] pow(long[] p, long K)
	{
		int n = p.length;
		int tz = trailingZeros(p);
		if((long)tz*K >= n)return new long[n];
		long[] pa = Arrays.copyOfRange(p, tz, n);
		int m = pa.length;

		// pa[0] must be 1
		long base = pa[0];
		long scale = invl(base, mod);
		for(int i = 0;i < m;i++)pa[i] = pa[i] * scale % mod;

		long[] lnp = Arrays.copyOf(ln(pa), m);
		for(int i = 0;i < m;i++)lnp[i] = lnp[i] * K % mod;
		long[] reta = exp(lnp);

		long kscale = pow(base, K, mod);
		for(int i = 0;i < m;i++)reta[i] = reta[i] * kscale % mod;

		long[] ret = new long[n];
		System.arraycopy(reta, 0, ret, (int)(tz*K), (int)(n-tz*K));
		return ret;
	}

	public static int trailingZeros(long[] a)
	{
		int ret = 0;
		for(long v : a) {
			if(v == 0) {
				ret++;
			}else {
				break;
			}
		}
		return ret;
	}

	public static long[] convoluteSimply(long[] a, long[] b, int P, int g)
	{
		int m = Math.max(2, Integer.highestOneBit(Math.max(a.length, b.length)-1)<<2);
		long[] fa = nttmb(a, m, false, P, g);
		long[] fb = a == b ? fa : nttmb(b, m, false, P, g);
		for(int i = 0;i < m;i++){
			fa[i] = fa[i]*fb[i]%P;
		}
		return nttmb(fa, m, true, P, g);
	}

	// static int[] wws = new int[270000]; // outer faster

	// Modifed Montgomery + Barrett
	private static long[] nttmb(long[] src, int n, boolean inverse, int P, int g)
	{
		long[] dst = Arrays.copyOf(src, n);

		int h = Integer.numberOfTrailingZeros(n);
		long K = Integer.highestOneBit(P)<<1;
		int H = Long.numberOfTrailingZeros(K)*2;
		long M = K*K/P;

		int[] wws = new int[1<<h-1];
		long dw = inverse ? pow(g, P-1-(P-1)/n, P) : pow(g, (P-1)/n, P);
		long w = (1L<<32)%P;
		for(int k = 0;k < 1<<h-1;k++){
			wws[k] = (int)w;
			w = modh(w*dw, M, H, P);
		}
		long J = invl(P, 1L<<32);
		for(int i = 0;i < h;i++){
			for(int j = 0;j < 1<<i;j++){
				for(int k = 0, s = j<<h-i, t = s|1<<h-i-1;k < 1<<h-i-1;k++,s++,t++){
					long u = (dst[s] - dst[t] + 2*P)*wws[k];
					dst[s] += dst[t];
					if(dst[s] >= 2*P)dst[s] -= 2*P;
					//					long Q = (u&(1L<<32)-1)*J&(1L<<32)-1;
					long Q = (u<<32)*J>>>32;
					dst[t] = (u>>>32)-(Q*P>>>32)+P;
				}
			}
			if(i < h-1){
				for(int k = 0;k < 1<<h-i-2;k++)wws[k] = wws[k*2];
			}
		}
		for(int i = 0;i < n;i++){
			if(dst[i] >= P)dst[i] -= P;
		}
		for(int i = 0;i < n;i++){
			int rev = Integer.reverse(i)>>>-h;
			if(i < rev){
				long d = dst[i]; dst[i] = dst[rev]; dst[rev] = d;
			}
		}

		if(inverse){
			long in = invl(n, P);
			for(int i = 0;i < n;i++)dst[i] = modh(dst[i]*in, M, H, P);
		}

		return dst;
	}

	// Modified Shoup + Barrett
	private static long[] nttsb(long[] src, int n, boolean inverse, int P, int g)
	{
		long[] dst = Arrays.copyOf(src, n);

		int h = Integer.numberOfTrailingZeros(n);
		long K = Integer.highestOneBit(P)<<1;
		int H = Long.numberOfTrailingZeros(K)*2;
		long M = K*K/P;

		long dw = inverse ? pow(g, P-1-(P-1)/n, P) : pow(g, (P-1)/n, P);
		long[] wws = new long[1<<h-1];
		long[] ws = new long[1<<h-1];
		long w = 1;
		for(int k = 0;k < 1<<h-1;k++){
			wws[k] = (w<<32)/P;
			ws[k] = w;
			w = modh(w*dw, M, H, P);
		}
		for(int i = 0;i < h;i++){
			for(int j = 0;j < 1<<i;j++){
				for(int k = 0, s = j<<h-i, t = s|1<<h-i-1;k < 1<<h-i-1;k++,s++,t++){
					long ndsts = dst[s] + dst[t];
					if(ndsts >= 2*P)ndsts -= 2*P;
					long T = dst[s] - dst[t] + 2*P;
					long Q = wws[k]*T>>>32;
					dst[s] = ndsts;
					dst[t] = ws[k]*T-Q*P&(1L<<32)-1;
				}
			}
			//			dw = dw * dw % P;
			if(i < h-1){
				for(int k = 0;k < 1<<h-i-2;k++){
					wws[k] = wws[k*2];
					ws[k] = ws[k*2];
				}
			}
		}
		for(int i = 0;i < n;i++){
			if(dst[i] >= P)dst[i] -= P;
		}
		for(int i = 0;i < n;i++){
			int rev = Integer.reverse(i)>>>-h;
			if(i < rev){
				long d = dst[i]; dst[i] = dst[rev]; dst[rev] = d;
			}
		}

		if(inverse){
			long in = invl(n, P);
			for(int i = 0;i < n;i++){
				dst[i] = modh(dst[i] * in, M, H, P);
			}
		}

		return dst;
	}

	static final long mask = (1L<<31)-1;

	public static long modh(long a, long M, int h, int mod)
	{
		long r = a-((M*(a&mask)>>>31)+M*(a>>>31)>>>h-31)*mod;
		return r < mod ? r : r-mod;
	}

	private static long[] garnerPrepare(int[] m)
	{
		int n = m.length;
		assert n == m.length;
		if(n == 0)return new long[0];
		long[] gamma = new long[n];
		for(int k = 1;k < n;k++){
			long prod = 1;
			for(int i = 0;i < k;i++){
				prod = prod * m[i] % m[k];
			}
			gamma[k] = invl(prod, m[k]);
		}
		return gamma;
	}

	private static long[] garnerBatch(int[] u, int[] m, long[] gamma)
	{
		int n = u.length;
		assert n == m.length;
		long[] v = new long[n];
		v[0] = u[0];
		for(int k = 1;k < n;k++){
			long temp = v[k-1];
			for(int j = k-2;j >= 0;j--){
				temp = (temp * m[j] + v[j]) % m[k];
			}
			v[k] = (u[k] - temp) * gamma[k] % m[k];
			if(v[k] < 0)v[k] += m[k];
		}
		return v;
	}


	public static int[][] enumFIF(int n) {
		int[] f = new int[n + 1];
		int[] invf = new int[n + 1];
		f[0] = 1;
		for (int i = 1; i <= n; i++) {
			f[i] = (int) ((long) f[i - 1] * i % mod);
		}
		long a = f[n];
		long b = mod;
		long p = 1, q = 0;
		while (b > 0) {
			long c = a / b;
			long d;
			d = a;
			a = b;
			b = d % b;
			d = p;
			p = q;
			q = d - c * q;
		}
		invf[n] = (int) (p < 0 ? p + mod : p);
		for (int i = n - 1; i >= 0; i--) {
			invf[i] = (int) ((long) invf[i + 1] * (i + 1) % mod);
		}
		return new int[][]{f, invf};
	}


	public static void main(String[] args) {
		new E2().run();
	}

	public void run()
	{
		long S = System.currentTimeMillis();
		is = INPUT.isEmpty() ? System.in : new ByteArrayInputStream(INPUT.getBytes());
		out = new FastWriter(System.out);

		solve();
		out.flush();
		long G = System.currentTimeMillis();
		tr(G-S+"ms");
		//		Thread t = new Thread(null, null, "~", Runtime.getRuntime().maxMemory()){
		//			@Override
		//			public void run() {
		//				long s = System.currentTimeMillis();
		//				solve();
		//				out.flush();
		//				if(!INPUT.isEmpty())tr(System.currentTimeMillis()-s+"ms");
		//			}
		//		};
		//		t.start();
		//		t.join();
	}

	private boolean eof()
	{
		if(lenbuf == -1)return true;
		int lptr = ptrbuf;
		while(lptr < lenbuf)if(!isSpaceChar(inbuf[lptr++]))return false;

		try {
			is.mark(1000);
			while(true){
				int b = is.read();
				if(b == -1){
					is.reset();
					return true;
				}else if(!isSpaceChar(b)){
					is.reset();
					return false;
				}
			}
		} catch (IOException e) {
			return true;
		}
	}

	private final byte[] inbuf = new byte[1024];
	public int lenbuf = 0, ptrbuf = 0;

	private int readByte()
	{
		if(lenbuf == -1)throw new InputMismatchException();
		if(ptrbuf >= lenbuf){
			ptrbuf = 0;
			try { lenbuf = is.read(inbuf); } catch (IOException e) { throw new InputMismatchException(); }
			if(lenbuf <= 0)return -1;
		}
		return inbuf[ptrbuf++];
	}

	private boolean isSpaceChar(int c) { return !(c >= 33 && c <= 126); }
	//	private boolean isSpaceChar(int c) { return !(c >= 32 && c <= 126); }
	private int skip() { int b; while((b = readByte()) != -1 && isSpaceChar(b)); return b; }

	private double nd() { return Double.parseDouble(ns()); }
	private char nc() { return (char)skip(); }

	private String ns()
	{
		int b = skip();
		StringBuilder sb = new StringBuilder();
		while(!(isSpaceChar(b))){
			sb.appendCodePoint(b);
			b = readByte();
		}
		return sb.toString();
	}

	private char[] ns(int n)
	{
		char[] buf = new char[n];
		int b = skip(), p = 0;
		while(p < n && !(isSpaceChar(b))){
			buf[p++] = (char)b;
			b = readByte();
		}
		return n == p ? buf : Arrays.copyOf(buf, p);
	}

	private char[][] nm(int n, int m)
	{
		char[][] map = new char[n][];
		for(int i = 0;i < n;i++)map[i] = ns(m);
		return map;
	}

	private int[] na(int n)
	{
		int[] a = new int[n];
		for(int i = 0;i < n;i++)a[i] = ni();
		return a;
	}

	private long[] nal(int n)
	{
		long[] a = new long[n];
		for(int i = 0;i < n;i++)a[i] = nl();
		return a;
	}

	private int ni()
	{
		int num = 0, b;
		boolean minus = false;
		while((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-'));
		if(b == '-'){
			minus = true;
			b = readByte();
		}

		while(true){
			if(b >= '0' && b <= '9'){
				num = num * 10 + (b - '0');
			}else{
				return minus ? -num : num;
			}
			b = readByte();
		}
	}

	private long nl()
	{
		long num = 0;
		int b;
		boolean minus = false;
		while((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-'));
		if(b == '-'){
			minus = true;
			b = readByte();
		}

		while(true){
			if(b >= '0' && b <= '9'){
				num = num * 10 + (b - '0');
			}else{
				return minus ? -num : num;
			}
			b = readByte();
		}
	}

	public static class FastWriter
	{
		private static final int BUF_SIZE = 1<<13;
		private final byte[] buf = new byte[BUF_SIZE];
		private final OutputStream out;
		private int ptr = 0;

		private FastWriter(){out = null;}

		public FastWriter(OutputStream os)
		{
			this.out = os;
		}

		public FastWriter(String path)
		{
			try {
				this.out = new FileOutputStream(path);
			} catch (FileNotFoundException e) {
				throw new RuntimeException("FastWriter");
			}
		}

		public FastWriter write(byte b)
		{
			buf[ptr++] = b;
			if(ptr == BUF_SIZE)innerflush();
			return this;
		}

		public FastWriter write(char c)
		{
			return write((byte)c);
		}

		public FastWriter write(char[] s)
		{
			for(char c : s){
				buf[ptr++] = (byte)c;
				if(ptr == BUF_SIZE)innerflush();
			}
			return this;
		}

		public FastWriter write(String s)
		{
			s.chars().forEach(c -> {
				buf[ptr++] = (byte)c;
				if(ptr == BUF_SIZE)innerflush();
			});
			return this;
		}

		private static int countDigits(int l) {
			if (l >= 1000000000) return 10;
			if (l >= 100000000) return 9;
			if (l >= 10000000) return 8;
			if (l >= 1000000) return 7;
			if (l >= 100000) return 6;
			if (l >= 10000) return 5;
			if (l >= 1000) return 4;
			if (l >= 100) return 3;
			if (l >= 10) return 2;
			return 1;
		}

		public FastWriter write(int x)
		{
			if(x == Integer.MIN_VALUE){
				return write((long)x);
			}
			if(ptr + 12 >= BUF_SIZE)innerflush();
			if(x < 0){
				write((byte)'-');
				x = -x;
			}
			int d = countDigits(x);
			for(int i = ptr + d - 1;i >= ptr;i--){
				buf[i] = (byte)('0'+x%10);
				x /= 10;
			}
			ptr += d;
			return this;
		}

		private static int countDigits(long l) {
			if (l >= 1000000000000000000L) return 19;
			if (l >= 100000000000000000L) return 18;
			if (l >= 10000000000000000L) return 17;
			if (l >= 1000000000000000L) return 16;
			if (l >= 100000000000000L) return 15;
			if (l >= 10000000000000L) return 14;
			if (l >= 1000000000000L) return 13;
			if (l >= 100000000000L) return 12;
			if (l >= 10000000000L) return 11;
			if (l >= 1000000000L) return 10;
			if (l >= 100000000L) return 9;
			if (l >= 10000000L) return 8;
			if (l >= 1000000L) return 7;
			if (l >= 100000L) return 6;
			if (l >= 10000L) return 5;
			if (l >= 1000L) return 4;
			if (l >= 100L) return 3;
			if (l >= 10L) return 2;
			return 1;
		}

		public FastWriter write(long x)
		{
			if(x == Long.MIN_VALUE){
				return write("" + x);
			}
			if(ptr + 21 >= BUF_SIZE)innerflush();
			if(x < 0){
				write((byte)'-');
				x = -x;
			}
			int d = countDigits(x);
			for(int i = ptr + d - 1;i >= ptr;i--){
				buf[i] = (byte)('0'+x%10);
				x /= 10;
			}
			ptr += d;
			return this;
		}

		public FastWriter write(double x, int precision)
		{
			if(x < 0){
				write('-');
				x = -x;
			}
			x += Math.pow(10, -precision)/2;
			//		if(x < 0){ x = 0; }
			write((long)x).write(".");
			x -= (long)x;
			for(int i = 0;i < precision;i++){
				x *= 10;
				write((char)('0'+(int)x));
				x -= (int)x;
			}
			return this;
		}

		public FastWriter writeln(char c){
			return write(c).writeln();
		}

		public FastWriter writeln(int x){
			return write(x).writeln();
		}

		public FastWriter writeln(long x){
			return write(x).writeln();
		}

		public FastWriter writeln(double x, int precision){
			return write(x, precision).writeln();
		}

		public FastWriter write(int... xs)
		{
			boolean first = true;
			for(int x : xs) {
				if (!first) write(' ');
				first = false;
				write(x);
			}
			return this;
		}

		public FastWriter write(long... xs)
		{
			boolean first = true;
			for(long x : xs) {
				if (!first) write(' ');
				first = false;
				write(x);
			}
			return this;
		}

		public FastWriter writeln()
		{
			return write((byte)'\n');
		}

		public FastWriter writeln(int... xs)
		{
			return write(xs).writeln();
		}

		public FastWriter writeln(long... xs)
		{
			return write(xs).writeln();
		}

		public FastWriter writeln(char[] line)
		{
			return write(line).writeln();
		}

		public FastWriter writeln(char[]... map)
		{
			for(char[] line : map)write(line).writeln();
			return this;
		}

		public FastWriter writeln(String s)
		{
			return write(s).writeln();
		}

		private void innerflush()
		{
			try {
				out.write(buf, 0, ptr);
				ptr = 0;
			} catch (IOException e) {
				throw new RuntimeException("innerflush");
			}
		}

		public void flush()
		{
			innerflush();
			try {
				out.flush();
			} catch (IOException e) {
				throw new RuntimeException("flush");
			}
		}

		public FastWriter print(byte b) { return write(b); }
		public FastWriter print(char c) { return write(c); }
		public FastWriter print(char[] s) { return write(s); }
		public FastWriter print(String s) { return write(s); }
		public FastWriter print(int x) { return write(x); }
		public FastWriter print(long x) { return write(x); }
		public FastWriter print(double x, int precision) { return write(x, precision); }
		public FastWriter println(char c){ return writeln(c); }
		public FastWriter println(int x){ return writeln(x); }
		public FastWriter println(long x){ return writeln(x); }
		public FastWriter println(double x, int precision){ return writeln(x, precision); }
		public FastWriter print(int... xs) { return write(xs); }
		public FastWriter print(long... xs) { return write(xs); }
		public FastWriter println(int... xs) { return writeln(xs); }
		public FastWriter println(long... xs) { return writeln(xs); }
		public FastWriter println(char[] line) { return writeln(line); }
		public FastWriter println(char[]... map) { return writeln(map); }
		public FastWriter println(String s) { return writeln(s); }
		public FastWriter println() { return writeln(); }
	}

	public static void trnz(int... o)
	{
		for(int i = 0;i < o.length;i++)if(o[i] != 0)System.out.print(i+":"+o[i]+" ");
		System.out.println();
	}

	// print ids which are 1
	public static void trt(long... o)
	{
		Queue<Integer> stands = new ArrayDeque<>();
		for(int i = 0;i < o.length;i++){
			for(long x = o[i];x != 0;x &= x-1)stands.add(i<<6|Long.numberOfTrailingZeros(x));
		}
		System.out.println(stands);
	}

	public static void tf(boolean... r)
	{
		for(boolean x : r)System.out.print(x?'#':'.');
		System.out.println();
	}

	public static void tf(boolean[]... b)
	{
		for(boolean[] r : b) {
			for(boolean x : r)System.out.print(x?'#':'.');
			System.out.println();
		}
		System.out.println();
	}

	public void tf(long[]... b)
	{
		if(INPUT.length() != 0) {
			for (long[] r : b) {
				for (long x : r) {
					for (int i = 0; i < 64; i++) {
						System.out.print(x << ~i < 0 ? '#' : '.');
					}
				}
				System.out.println();
			}
			System.out.println();
		}
	}

	public void tf(long... b)
	{
		if(INPUT.length() != 0) {
			for (long x : b) {
				for (int i = 0; i < 64; i++) {
					System.out.print(x << ~i < 0 ? '#' : '.');
				}
			}
			System.out.println();
		}
	}

	private void tr(Object... o) { if(INPUT.length() != 0)System.out.println(Arrays.deepToString(o)); }
}
0