結果
| 問題 |
No.1301 Strange Graph Shortest Path
|
| コンテスト | |
| ユーザー |
kcvlex
|
| 提出日時 | 2020-11-27 22:18:10 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 4,654 bytes |
| コンパイル時間 | 2,016 ms |
| コンパイル使用メモリ | 167,468 KB |
| 最終ジャッジ日時 | 2025-01-16 07:40:35 |
|
ジャッジサーバーID (参考情報) |
judge5 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 2 |
| other | AC * 28 WA * 5 |
ソースコード
#include <limits>
#include <initializer_list>
#include <utility>
#include <bitset>
#include <tuple>
#include <type_traits>
#include <functional>
#include <string>
#include <array>
#include <deque>
#include <list>
#include <queue>
#include <stack>
#include <vector>
#include <map>
#include <set>
#include <unordered_map>
#include <unordered_set>
#include <iterator>
#include <algorithm>
#include <complex>
#include <random>
#include <numeric>
#include <iostream>
#include <iomanip>
#include <sstream>
#include <regex>
#include <cassert>
#include <cstddef>
#include <variant>
#define endl codeforces
#define ALL(v) std::begin(v), std::end(v)
#define ALLR(v) std::rbegin(v), std::rend(v)
using ll = std::int64_t;
using ull = std::uint64_t;
using pii = std::pair<int, int>;
using tii = std::tuple<int, int, int>;
using pll = std::pair<ll, ll>;
using tll = std::tuple<ll, ll, ll>;
using size_type = ssize_t;
template <typename T> using vec = std::vector<T>;
template <typename T> using vvec = vec<vec<T>>;
template <typename T> const T& var_min(const T &t) { return t; }
template <typename T> const T& var_max(const T &t) { return t; }
template <typename T, typename... Tail> const T& var_min(const T &t, const Tail&... tail) { return std::min(t, var_min(tail...)); }
template <typename T, typename... Tail> const T& var_max(const T &t, const Tail&... tail) { return std::max(t, var_max(tail...)); }
template <typename T, typename... Tail> void chmin(T &t, const Tail&... tail) { t = var_min(t, tail...); }
template <typename T, typename... Tail> void chmax(T &t, const Tail&... tail) { t = var_max(t, tail...); }
template <typename T, std::size_t Head, std::size_t... Tail>
struct multi_dim_array { using type = std::array<typename multi_dim_array<T, Tail...>::type, Head>; };
template <typename T, std::size_t Head>
struct multi_dim_array<T, Head> { using type = std::array<T, Head>; };
template <typename T, std::size_t... Args> using mdarray = typename multi_dim_array<T, Args...>::type;
template <typename T, typename F, typename... Args>
void fill_seq(T &t, F f, Args... args) {
if constexpr (std::is_invocable<F, Args...>::value) {
t = f(args...);
} else {
for (size_type i = 0; i < t.size(); i++) fill_seq(t[i], f, args..., i);
}
}
template <typename T> vec<T> make_v(size_type sz) { return vec<T>(sz); }
template <typename T, typename... Tail>
auto make_v(size_type hs, Tail&&... ts) {
auto v = std::move(make_v<T>(std::forward<Tail>(ts)...));
return vec<decltype(v)>(hs, v);
}
namespace init__ {
struct InitIO {
InitIO() {
std::cin.tie(nullptr);
std::ios_base::sync_with_stdio(false);
std::cout << std::fixed << std::setprecision(30);
}
} init_io;
}
template <typename T>
T ceil_pow2(T bound) {
T ret = 1;
while (ret < bound) ret *= 2;
return ret;
}
template <typename T>
T ceil_div(T a, T b) { return a / b + !!(a % b); }
int main() {
ll n, m;
std::cin >> n >> m;
using raw_edge = std::tuple<ll, ll, ll, ll>;
vec<raw_edge> edges(m);
for (auto &[ u, v, c, d ] : edges) {
std::cin >> u >> v >> c >> d;
u--; v--;
}
vec<ll> cost1(m), cost2(m);
vvec<pll> g(n);
for (ll i = 0; i < m; i++) {
auto [ u, v, c , d ] = edges[i];
cost1[i] = c;
cost2[i] = d;
g[u].emplace_back(v, i);
g[v].emplace_back(u, i);
}
constexpr ll inf = 5e15;
vec<bool> used(m, false);
vec<ll> prev(m, -inf);
auto get_adj = [&](ll u, pll e) {
auto [ a, b ] = e;
if (u == a) return b;
else return a;
};
auto get_cost = [&](ll idx) {
if (used[idx]) return cost2[idx];
return cost1[idx];
};
auto dijk = [&] {
std::priority_queue<tll, vec<tll>, std::greater<tll>> pq;
vec<ll> dists(n, inf);
dists[0] = 0;
pq.emplace(0, 0, -1);
while (pq.size()) {
auto [ d, cur, eidx ] = pq.top();
pq.pop();
if (dists[cur] < d) continue;
prev[cur] = eidx;
for (auto [ nxt, i ] : g[cur]) {
auto nd = d + get_cost(i);
if (dists[nxt] <= nd) continue;
dists[nxt] = nd;
pq.emplace(nd, nxt, i);
}
}
return dists;
};
auto d1 = dijk();
ll cur = n - 1;
while (cur) {
auto idx = prev[cur];
used[idx] = true;
auto [ u, v, c, d ] = edges[idx];
auto p = get_adj(cur, pll(u, v));
cur = p;
}
auto d2 = dijk();
std::cout << d1.back() + d2.back() << "\n";
return 0;
}
kcvlex