結果
| 問題 |
No.1301 Strange Graph Shortest Path
|
| コンテスト | |
| ユーザー |
m_tsubasa
|
| 提出日時 | 2020-11-27 22:21:49 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 3,352 bytes |
| コンパイル時間 | 2,817 ms |
| コンパイル使用メモリ | 220,868 KB |
| 最終ジャッジ日時 | 2025-01-16 07:44:43 |
|
ジャッジサーバーID (参考情報) |
judge1 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 2 |
| other | AC * 3 WA * 30 |
ソースコード
#include <bits/stdc++.h>
#define inf (long long)(1e17)
using namespace std;
template <class T>
struct Primal_Dual {
using Pa = pair<T, int>;
int infinity = (int)(1e9);
struct edge {
int to;
T cap, cost;
int rev;
};
int v;
vector<vector<edge>> edges;
vector<T> h;
vector<T> dist;
vector<int> prevv, preve;
Primal_Dual(int vsize = 1) {
v = vsize;
edges.resize(v);
h.resize(v);
dist.resize(v);
prevv.resize(v);
preve.resize(v);
}
bool add(int from, int to, T cap, T cost) {
edges[from].push_back((edge){to, cap, cost, (int)edges[to].size()});
edges[to].push_back((edge){from, 0, -cost, (int)edges[from].size() - 1});
return 1;
}
T solve(int s, int t, T f) {
T ans = 0;
h.assign(v, 0);
while (f > 0) {
priority_queue<Pa, vector<Pa>, greater<Pa>> qu;
dist.assign(v, infinity);
dist[s] = 0;
qu.push({0, s});
while (!qu.empty()) {
Pa now = qu.top();
qu.pop();
int nowv = now.second;
if (dist[nowv] < now.first) continue;
for (int i = 0; i < (int)edges[nowv].size(); ++i) {
edge &e = edges[nowv][i];
if (e.cap > 0 &&
dist[e.to] > dist[nowv] + e.cost + h[nowv] - h[e.to]) {
dist[e.to] = dist[nowv] + e.cost + h[nowv] - h[e.to];
prevv[e.to] = nowv;
preve[e.to] = i;
qu.push({dist[e.to], e.to});
}
}
}
if (dist[t] == infinity) return -1;
for (int i = 0; i < v; ++i) h[i] += dist[i];
T d = f;
for (int i = t; i != s; i = prevv[i])
d = min(d, edges[prevv[i]][preve[i]].cap);
f -= d;
ans += d * h[t];
for (int i = t; i != s; i = prevv[i]) {
edge &e = edges[prevv[i]][preve[i]];
e.cap -= d;
edges[i][e.rev].cap += d;
}
}
return ans;
}
};
using P = pair<long long, long long>;
int n, m;
vector<map<int, long long>> g, g2;
priority_queue<P, vector<P>, greater<P>> pq;
Primal_Dual<long long> pd;
long long solve();
int main() {
cin >> n >> m;
g.resize(n);
g2.resize(n);
pd = Primal_Dual<long long>(n);
for (int i = 0; i < m; ++i) {
int x, y, c, d;
cin >> x >> y >> c >> d;
--x, --y;
pd.add(x, y, 1, c);
pd.add(y, x, 1, c);
pd.add(x, y, 1, d);
pd.add(y, x, 1, d);
g[x][y] = g[y][x] = c;
g2[x][y] = g2[y][x] = d;
}
cout << solve() << endl;
return 0;
}
long long solve() {
return pd.solve(0, n - 1, 2);
long long res = 0;
auto dijk = [](vector<map<int, long long>> &g, vector<long long> &dist,
vector<long long> &par) {
dist.assign(n, inf);
par.assign(n, -1);
pq.push(P(0, 0));
dist[0] = 0;
while (pq.size()) {
auto [d, now] = pq.top();
pq.pop();
if (d != dist[now]) continue;
for (auto [to, cost] : g[now])
if (d + cost < dist[to]) {
dist[to] = d + cost;
par[to] = now;
pq.push(P(dist[to], to));
}
}
return dist[n - 1];
};
vector<long long> dist, par;
res += dijk(g, dist, par);
int now = n - 1;
while (now != 0) {
int to = par[now];
g[to][now] = g[now][to] = -1;
now = to;
}
for (int i = 0; i < n; ++i)
for (auto [to, cost] : g[i])
if (cost >= 0) g2[i][to] = cost;
return res + dijk(g2, dist, par);
}
m_tsubasa