結果
問題 |
No.1301 Strange Graph Shortest Path
|
ユーザー |
![]() |
提出日時 | 2020-11-27 22:24:47 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 2,680 bytes |
コンパイル時間 | 3,203 ms |
コンパイル使用メモリ | 208,768 KB |
最終ジャッジ日時 | 2025-01-16 07:47:16 |
ジャッジサーバーID (参考情報) |
judge2 / judge1 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 2 |
other | AC * 28 WA * 5 |
コンパイルメッセージ
main.cpp: In function ‘int main()’: main.cpp:96:10: warning: ignoring return value of ‘int scanf(const char*, ...)’ declared with attribute ‘warn_unused_result’ [-Wunused-result] 96 | scanf("%d%d", &n, &m); | ~~~~~^~~~~~~~~~~~~~~~ main.cpp:101:14: warning: ignoring return value of ‘int scanf(const char*, ...)’ declared with attribute ‘warn_unused_result’ [-Wunused-result] 101 | scanf("%d%d%lld%lld", &a, &b, &c, &d); | ~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
ソースコード
#include <bits/stdc++.h> //#include <atcoder/all> #define For(i, a, b) for (int(i) = (int)(a); (i) < (int)(b); ++(i)) #define rFor(i, a, b) for (int(i) = (int)(a)-1; (i) >= (int)(b); --(i)) #define rep(i, n) For((i), 0, (n)) #define rrep(i, n) rFor((i), (n), 0) #define fi first #define se second using namespace std; typedef long long lint; typedef unsigned long long ulint; typedef pair<int, int> pii; typedef pair<lint, lint> pll; template <class T> bool chmax(T &a, const T &b) { if (a < b) { a = b; return true; } return false; } template <class T> bool chmin(T &a, const T &b) { if (a > b) { a = b; return true; } return false; } template <class T> T div_floor(T a, T b) { if (b < 0) a *= -1, b *= -1; return a >= 0 ? a / b : (a + 1) / b - 1; } template <class T> T div_ceil(T a, T b) { if (b < 0) a *= -1, b *= -1; return a > 0 ? (a - 1) / b + 1 : a / b; } constexpr lint mod = 1000000007; constexpr lint INF = mod * mod; constexpr int MAX = 100010; template <typename T> struct edge { int from, to, id; T cost[2]; edge(int f, int t, T c, T d, int i = 0) : from(f), to(t), id(i) { cost[0] = c; cost[1] = d; } }; template <typename T> struct Graph { vector<vector<edge<T>>> G; int n; Graph(int n_) : n(n_) { G.resize(n); } void add_edge(int f, int t, T c, T d, int i = 0) { G[f].emplace_back(f, t, c, d, i); } }; int used[MAX]; template <typename T> pair<vector<T>, vector<pii>> dijkstra(Graph<T> &gr, int s) { using state = pair<T, int>; priority_queue<state, vector<state>, greater<state>> que; vector<T> d(gr.n, numeric_limits<T>::max()); vector<pii> pe(gr.n); d[s] = 0; que.emplace(0, s); while (!que.empty()) { state p = que.top(); que.pop(); int v = p.second; if (d[v] < p.first) continue; for (edge<T> &e : gr.G[v]) { if (d[e.to] > d[v] + e.cost[used[e.id]]) { d[e.to] = d[v] + e.cost[used[e.id]]; pe[e.to] = {e.id, v}; que.emplace(d[e.to], e.to); } } } return {d, pe}; } int main() { int n, m; scanf("%d%d", &n, &m); Graph<lint> gr(n); rep(i, m) { int a, b; lint c, d; scanf("%d%d%lld%lld", &a, &b, &c, &d); --a; --b; gr.add_edge(a, b, c, d, i); gr.add_edge(b, a, c, d, i); } auto [d, pe] = dijkstra(gr, 0); int v = n - 1; while (v != 0) { used[pe[v].fi] = 1; v = pe[v].se; } auto [d2, pe2] = dijkstra(gr, n - 1); printf("%lld\n", d[n - 1] + d2[0]); }