結果
| 問題 |
No.1301 Strange Graph Shortest Path
|
| コンテスト | |
| ユーザー |
kcvlex
|
| 提出日時 | 2020-11-27 22:29:41 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 878 ms / 3,000 ms |
| コード長 | 10,064 bytes |
| コンパイル時間 | 2,058 ms |
| コンパイル使用メモリ | 169,572 KB |
| 最終ジャッジ日時 | 2025-01-16 07:52:35 |
|
ジャッジサーバーID (参考情報) |
judge3 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 2 |
| other | AC * 33 |
ソースコード
#include <limits>
#include <initializer_list>
#include <utility>
#include <bitset>
#include <tuple>
#include <type_traits>
#include <functional>
#include <string>
#include <array>
#include <deque>
#include <list>
#include <queue>
#include <stack>
#include <vector>
#include <map>
#include <set>
#include <unordered_map>
#include <unordered_set>
#include <iterator>
#include <algorithm>
#include <complex>
#include <random>
#include <numeric>
#include <iostream>
#include <iomanip>
#include <sstream>
#include <regex>
#include <cassert>
#include <cstddef>
#include <variant>
#define endl codeforces
#define ALL(v) std::begin(v), std::end(v)
#define ALLR(v) std::rbegin(v), std::rend(v)
using ll = std::int64_t;
using ull = std::uint64_t;
using pii = std::pair<int, int>;
using tii = std::tuple<int, int, int>;
using pll = std::pair<ll, ll>;
using tll = std::tuple<ll, ll, ll>;
using size_type = ssize_t;
template <typename T> using vec = std::vector<T>;
template <typename T> using vvec = vec<vec<T>>;
template <typename T> const T& var_min(const T &t) { return t; }
template <typename T> const T& var_max(const T &t) { return t; }
template <typename T, typename... Tail> const T& var_min(const T &t, const Tail&... tail) { return std::min(t, var_min(tail...)); }
template <typename T, typename... Tail> const T& var_max(const T &t, const Tail&... tail) { return std::max(t, var_max(tail...)); }
template <typename T, typename... Tail> void chmin(T &t, const Tail&... tail) { t = var_min(t, tail...); }
template <typename T, typename... Tail> void chmax(T &t, const Tail&... tail) { t = var_max(t, tail...); }
template <typename T, std::size_t Head, std::size_t... Tail>
struct multi_dim_array { using type = std::array<typename multi_dim_array<T, Tail...>::type, Head>; };
template <typename T, std::size_t Head>
struct multi_dim_array<T, Head> { using type = std::array<T, Head>; };
template <typename T, std::size_t... Args> using mdarray = typename multi_dim_array<T, Args...>::type;
template <typename T, typename F, typename... Args>
void fill_seq(T &t, F f, Args... args) {
if constexpr (std::is_invocable<F, Args...>::value) {
t = f(args...);
} else {
for (size_type i = 0; i < t.size(); i++) fill_seq(t[i], f, args..., i);
}
}
template <typename T> vec<T> make_v(size_type sz) { return vec<T>(sz); }
template <typename T, typename... Tail>
auto make_v(size_type hs, Tail&&... ts) {
auto v = std::move(make_v<T>(std::forward<Tail>(ts)...));
return vec<decltype(v)>(hs, v);
}
namespace init__ {
struct InitIO {
InitIO() {
std::cin.tie(nullptr);
std::ios_base::sync_with_stdio(false);
std::cout << std::fixed << std::setprecision(30);
}
} init_io;
}
template <typename T>
T ceil_pow2(T bound) {
T ret = 1;
while (ret < bound) ret *= 2;
return ret;
}
template <typename T>
T ceil_div(T a, T b) { return a / b + !!(a % b); }
namespace graph {
using Node = ll;
using Weight = ll;
using Edge = std::pair<Node, Weight>;
template <bool Directed>
struct Graph : public vvec<Edge> {
using vvec<Edge>::vvec;
void add_edge(Node f, Node t, Weight w = 1) {
(*this)[f].emplace_back(t, w);
if (!Directed) (*this)[t].emplace_back(f, w);
}
Graph<Directed> build_inv() const {
Graph<Directed> ret(this->size());
for (Node i = 0; i < this->size(); i++) {
for (const Edge &e : (*this)[i]) {
Node j;
Weight w;
std::tie(j, w) = e;
if (!Directed && j < i) continue;
ret.add_edge(j, i, w);
}
}
return ret;
}
};
template <typename Iterator>
class dst_iterator {
Iterator ite;
public:
dst_iterator(Iterator ite) : ite(ite) { }
bool operator ==(const dst_iterator<Iterator> &oth) const {
return ite == oth.ite;
}
bool operator !=(const dst_iterator<Iterator> &oth) const {
return !(*this == oth);
}
bool operator <(const dst_iterator<Iterator> &oth) const {
return ite < oth.ite;
}
bool operator >(const dst_iterator<Iterator> &oth) const {
return ite > oth.ite;
}
bool operator <=(const dst_iterator<Iterator> &oth) const {
return ite <= oth.ite;
}
bool operator >=(const dst_iterator<Iterator> &oth) const {
return ite >= oth.ite;
}
const Node& operator *() {
return ite->first;
}
const Node& operator *() const {
return ite->first;
}
dst_iterator operator ++() {
++ite;
return ite;
}
};
class dst_iteration {
using ite_type = vec<Edge>::const_iterator;
const vec<Edge> &edges;
public:
dst_iteration(const vec<Edge> &edges) : edges(edges) { }
auto begin() const {
return dst_iterator<ite_type>(edges.cbegin());
}
auto end() const {
return dst_iterator<ite_type>(edges.cend());
}
};
class dst_reverse_iteration {
using ite_type = vec<Edge>::const_reverse_iterator;
const vec<Edge> &edges;
public:
dst_reverse_iteration(const vec<Edge> &edges) : edges(edges) { }
auto begin() const {
return dst_iterator<ite_type>(edges.crbegin());
}
auto end() const {
return dst_iterator<ite_type>(edges.crend());
}
};
dst_iteration dst(const vec<Edge> &edges) {
return dst_iteration(edges);
}
dst_reverse_iteration rdst(const vec<Edge> &edges) {
return dst_reverse_iteration(edges);
}
}
namespace graph {
using Capacity = ll;
struct FlowEdge : public std::tuple<Node, Capacity, ll, Weight> {
using std::tuple<Node, Capacity, ll, Weight>::tuple;
Node& to() {
return std::get<0>(*this);
}
const Node& to() const {
return std::get<0>(*this);
}
Capacity& cap() {
return std::get<1>(*this);
}
const Capacity& cap() const {
return std::get<1>(*this);
}
ll& rev_idx() {
return std::get<2>(*this);
}
const ll& rev_idx() const {
return std::get<2>(*this);
}
Weight& weight() {
return std::get<3>(*this);
}
const Weight& weight() const {
return std::get<3>(*this);
}
};
template <bool Directed>
struct FlowGraph : public vvec<FlowEdge> {
using vvec<FlowEdge>::vvec;
void add_edge(Node f, Node t, Capacity c = 1, Weight w = 1) {
add_edge_with_rev(f, t, c, w);
if (!Directed) add_edge_with_rev(t, f, c, w);
}
private:
void add_edge_with_rev(Node f, Node t, Capacity c, Weight w) {
FlowEdge fe(t, c, (ll)((*this)[t].size()), w);
(*this)[f].push_back(fe);
FlowEdge rfe(f, Capacity(), (ll)((*this)[f].size()) - 1, -w);
(*this)[t].push_back(rfe);
}
};
}
namespace flow {
using graph::Node;
using graph::Weight;
using graph::Capacity;
template <typename FlowGraph>
class MinCostFlow {
using prev_node_t = std::pair<Node, ll>;
using pq_ele_t = std::pair<Weight, Node>;
FlowGraph fgraph;
const Weight dinf = 5e15;
vec<Weight> dists, potential;
vec<prev_node_t> pnode;
void dijk(Node start) {
std::priority_queue<pq_ele_t, vec<pq_ele_t>, std::greater<pq_ele_t>> pq;
std::fill(ALL(dists), dinf);
dists[start] = 0;
pq.emplace(0, start);
while (pq.size()) {
Weight d;
Node from;
std::tie(d, from) = pq.top();
pq.pop();
if (dists[from] < d) continue;
for (ll i = 0; i < fgraph[from].size(); i++) {
const auto &edge = fgraph[from][i];
auto to = edge.to();
Weight dnxt = d + edge.weight() + potential[from] - potential[to];
if (edge.cap() <= 0 || dists[to] <= dnxt) continue;
dists[to] = dnxt;
pnode[to] = prev_node_t(from, i);
pq.emplace(dnxt, to);
}
}
}
public:
MinCostFlow(const FlowGraph &fgraph)
: fgraph(fgraph), dists(fgraph.size()),
potential(fgraph.size(), 0), pnode(fgraph.size())
{
}
Weight solve(Node start, Node goal, Capacity flow) {
Weight ret = 0;
while (0 < flow) {
dijk(start);
if (dists[goal] == dinf) return -1;
for (ll i = 0; i < fgraph.size(); i++) potential[i] += dists[i];
Capacity max_flow = flow;
for (Node cur = goal; cur != start; cur = pnode[cur].first) {
Node pre;
ll pidx;
std::tie(pre, pidx) = pnode[cur];
const auto &edge = fgraph[pre][pidx];
chmin(max_flow, edge.cap());
}
if (max_flow == 0) return -1;
flow -= max_flow;
ret += max_flow * potential[goal];
for (Node cur = goal; cur != start; cur = pnode[cur].first) {
Node pre;
ll pidx;
std::tie(pre, pidx) = pnode[cur];
auto &edge = fgraph[pre][pidx];
edge.cap() -= max_flow;
auto &redge = fgraph[cur][edge.rev_idx()];
redge.cap() += max_flow;
}
}
return ret;
}
const FlowGraph& get_graph() const {
return fgraph;
}
};
}
int main() {
ll n, m;
std::cin >> n >> m;
using raw_edge = std::tuple<ll, ll, ll, ll>;
vec<raw_edge> edges(m);
for (auto &[ u, v, c, d ] : edges) {
std::cin >> u >> v >> c >> d;
u--; v--;
}
graph::FlowGraph<true> fg(n + 2 * m);
for (ll i = 0; i < m; i++) {
auto [ u, v, c , d ] = edges[i];
ll src = n + 2 * i;
ll dst = src + 1;
fg.add_edge(u, src, 2, 0);
fg.add_edge(v, src, 2, 0);
fg.add_edge(dst, u, 2, 0);
fg.add_edge(dst, v, 2, 0);
fg.add_edge(src, dst, 1, c);
fg.add_edge(src, dst, 1, d);
}
flow::MinCostFlow<decltype(fg)> mcf(fg);
std::cout << mcf.solve(0, n - 1, 2) << "\n";
return 0;
}
kcvlex