結果
問題 | No.1301 Strange Graph Shortest Path |
ユーザー | NyaanNyaan |
提出日時 | 2020-11-27 22:44:25 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 12,001 bytes |
コンパイル時間 | 3,564 ms |
コンパイル使用メモリ | 321,456 KB |
実行使用メモリ | 30,512 KB |
最終ジャッジ日時 | 2024-07-26 20:02:37 |
合計ジャッジ時間 | 15,427 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,816 KB |
testcase_01 | AC | 2 ms
6,812 KB |
testcase_02 | WA | - |
testcase_03 | AC | 263 ms
23,676 KB |
testcase_04 | AC | 356 ms
30,036 KB |
testcase_05 | AC | 285 ms
25,280 KB |
testcase_06 | AC | 323 ms
27,788 KB |
testcase_07 | AC | 317 ms
27,232 KB |
testcase_08 | AC | 261 ms
23,676 KB |
testcase_09 | AC | 311 ms
26,520 KB |
testcase_10 | WA | - |
testcase_11 | AC | 327 ms
28,276 KB |
testcase_12 | AC | 337 ms
28,512 KB |
testcase_13 | AC | 313 ms
27,264 KB |
testcase_14 | AC | 296 ms
26,480 KB |
testcase_15 | AC | 291 ms
26,424 KB |
testcase_16 | AC | 362 ms
30,512 KB |
testcase_17 | AC | 327 ms
28,180 KB |
testcase_18 | AC | 288 ms
25,952 KB |
testcase_19 | AC | 322 ms
28,156 KB |
testcase_20 | AC | 323 ms
28,148 KB |
testcase_21 | AC | 319 ms
27,988 KB |
testcase_22 | AC | 341 ms
28,916 KB |
testcase_23 | AC | 319 ms
27,856 KB |
testcase_24 | AC | 321 ms
28,036 KB |
testcase_25 | AC | 353 ms
29,972 KB |
testcase_26 | AC | 319 ms
27,628 KB |
testcase_27 | AC | 329 ms
28,144 KB |
testcase_28 | AC | 301 ms
25,096 KB |
testcase_29 | WA | - |
testcase_30 | AC | 345 ms
29,360 KB |
testcase_31 | AC | 353 ms
29,796 KB |
testcase_32 | WA | - |
testcase_33 | WA | - |
testcase_34 | AC | 387 ms
29,132 KB |
ソースコード
/** * date : 2020-11-27 22:44:21 */ #pragma region kyopro_template #define Nyaan_template #include <immintrin.h> #include <bits/stdc++.h> #define pb push_back #define eb emplace_back #define fi first #define se second #define each(x, v) for (auto &x : v) #define all(v) (v).begin(), (v).end() #define sz(v) ((int)(v).size()) #define mem(a, val) memset(a, val, sizeof(a)) #define ini(...) \ int __VA_ARGS__; \ in(__VA_ARGS__) #define inl(...) \ long long __VA_ARGS__; \ in(__VA_ARGS__) #define ins(...) \ string __VA_ARGS__; \ in(__VA_ARGS__) #define inc(...) \ char __VA_ARGS__; \ in(__VA_ARGS__) #define in2(s, t) \ for (int i = 0; i < (int)s.size(); i++) { \ in(s[i], t[i]); \ } #define in3(s, t, u) \ for (int i = 0; i < (int)s.size(); i++) { \ in(s[i], t[i], u[i]); \ } #define in4(s, t, u, v) \ for (int i = 0; i < (int)s.size(); i++) { \ in(s[i], t[i], u[i], v[i]); \ } #define rep(i, N) for (long long i = 0; i < (long long)(N); i++) #define repr(i, N) for (long long i = (long long)(N)-1; i >= 0; i--) #define rep1(i, N) for (long long i = 1; i <= (long long)(N); i++) #define repr1(i, N) for (long long i = (N); (long long)(i) > 0; i--) #define reg(i, a, b) for (long long i = (a); i < (b); i++) #define die(...) \ do { \ out(__VA_ARGS__); \ return; \ } while (0) using namespace std; using ll = long long; template <class T> using V = vector<T>; using vi = vector<int>; using vl = vector<long long>; using vvi = vector<vector<int>>; using vd = V<double>; using vs = V<string>; using vvl = vector<vector<long long>>; using P = pair<long long, long long>; using vp = vector<P>; using pii = pair<int, int>; using vpi = vector<pair<int, int>>; constexpr int inf = 1001001001; constexpr long long infLL = (1LL << 61) - 1; template <typename T, typename U> inline bool amin(T &x, U y) { return (y < x) ? (x = y, true) : false; } template <typename T, typename U> inline bool amax(T &x, U y) { return (x < y) ? (x = y, true) : false; } template <typename T, typename U> ostream &operator<<(ostream &os, const pair<T, U> &p) { os << p.first << " " << p.second; return os; } template <typename T, typename U> istream &operator>>(istream &is, pair<T, U> &p) { is >> p.first >> p.second; return is; } template <typename T> ostream &operator<<(ostream &os, const vector<T> &v) { int s = (int)v.size(); for (int i = 0; i < s; i++) os << (i ? " " : "") << v[i]; return os; } template <typename T> istream &operator>>(istream &is, vector<T> &v) { for (auto &x : v) is >> x; return is; } void in() {} template <typename T, class... U> void in(T &t, U &... u) { cin >> t; in(u...); } void out() { cout << "\n"; } template <typename T, class... U> void out(const T &t, const U &... u) { cout << t; if (sizeof...(u)) cout << " "; out(u...); } #ifdef NyaanDebug #define trc(...) \ do { \ cerr << #__VA_ARGS__ << " = "; \ dbg_out(__VA_ARGS__); \ } while (0) #define trca(v, N) \ do { \ cerr << #v << " = "; \ array_out(v, N); \ } while (0) #define trcc(v) \ do { \ cerr << #v << " = {"; \ each(x, v) { cerr << " " << x << ","; } \ cerr << "}" << endl; \ } while (0) template <typename T> void _cout(const T &c) { cerr << c; } void _cout(const int &c) { if (c == 1001001001) cerr << "inf"; else if (c == -1001001001) cerr << "-inf"; else cerr << c; } void _cout(const unsigned int &c) { if (c == 1001001001) cerr << "inf"; else cerr << c; } void _cout(const long long &c) { if (c == 1001001001 || c == (1LL << 61) - 1) cerr << "inf"; else if (c == -1001001001 || c == -((1LL << 61) - 1)) cerr << "-inf"; else cerr << c; } void _cout(const unsigned long long &c) { if (c == 1001001001 || c == (1LL << 61) - 1) cerr << "inf"; else cerr << c; } template <typename T, typename U> void _cout(const pair<T, U> &p) { cerr << "{ "; _cout(p.fi); cerr << ", "; _cout(p.se); cerr << " } "; } template <typename T> void _cout(const vector<T> &v) { int s = v.size(); cerr << "{ "; for (int i = 0; i < s; i++) { cerr << (i ? ", " : ""); _cout(v[i]); } cerr << " } "; } template <typename T> void _cout(const vector<vector<T>> &v) { cerr << "[ "; for (const auto &x : v) { cerr << endl; _cout(x); cerr << ", "; } cerr << endl << " ] "; } void dbg_out() { cerr << endl; } template <typename T, class... U> void dbg_out(const T &t, const U &... u) { _cout(t); if (sizeof...(u)) cerr << ", "; dbg_out(u...); } template <typename T> void array_out(const T &v, int s) { cerr << "{ "; for (int i = 0; i < s; i++) { cerr << (i ? ", " : ""); _cout(v[i]); } cerr << " } " << endl; } template <typename T> void array_out(const T &v, int H, int W) { cerr << "[ "; for (int i = 0; i < H; i++) { cerr << (i ? ", " : ""); array_out(v[i], W); } cerr << " ] " << endl; } #else #define trc(...) #define trca(...) #define trcc(...) #endif inline int popcnt(unsigned long long a) { return __builtin_popcountll(a); } inline int lsb(unsigned long long a) { return __builtin_ctzll(a); } inline int msb(unsigned long long a) { return 63 - __builtin_clzll(a); } template <typename T> inline int getbit(T a, int i) { return (a >> i) & 1; } template <typename T> inline void setbit(T &a, int i) { a |= (1LL << i); } template <typename T> inline void delbit(T &a, int i) { a &= ~(1LL << i); } template <typename T> int lb(const vector<T> &v, const T &a) { return lower_bound(begin(v), end(v), a) - begin(v); } template <typename T> int ub(const vector<T> &v, const T &a) { return upper_bound(begin(v), end(v), a) - begin(v); } template <typename T> int btw(T a, T x, T b) { return a <= x && x < b; } template <typename T, typename U> T ceil(T a, U b) { return (a + b - 1) / b; } constexpr long long TEN(int n) { long long ret = 1, x = 10; while (n) { if (n & 1) ret *= x; x *= x; n >>= 1; } return ret; } template <typename T> vector<T> mkrui(const vector<T> &v) { vector<T> ret(v.size() + 1); for (int i = 0; i < int(v.size()); i++) ret[i + 1] = ret[i] + v[i]; return ret; }; template <typename T> vector<T> mkuni(const vector<T> &v) { vector<T> ret(v); sort(ret.begin(), ret.end()); ret.erase(unique(ret.begin(), ret.end()), ret.end()); return ret; } template <typename F> vector<int> mkord(int N, F f) { vector<int> ord(N); iota(begin(ord), end(ord), 0); sort(begin(ord), end(ord), f); return ord; } template <typename T = int> vector<T> mkiota(int N) { vector<T> ret(N); iota(begin(ret), end(ret), 0); return ret; } template <typename T> vector<int> mkinv(vector<T> &v) { vector<int> inv(v.size()); for (int i = 0; i < (int)v.size(); i++) inv[v[i]] = i; return inv; } struct IoSetupNya { IoSetupNya() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(15); cerr << fixed << setprecision(7); } } iosetupnya; void solve(); int main() { solve(); } #pragma endregion using namespace std; using namespace std; template <typename Key, typename Val> struct RadixHeap { using uint = typename make_unsigned<Key>::type; static constexpr int bit = sizeof(Key) * 8; array<vector<pair<uint, Val> >, bit + 1> vs; array<uint, bit + 1> ms; int s; uint last; RadixHeap() : s(0), last(0) { fill(begin(ms), end(ms), uint(-1)); } bool empty() const { return s == 0; } int size() const { return s; } __attribute__((target("lzcnt"))) inline uint64_t getbit(uint a) const { return 64 - _lzcnt_u64(a); } void push(const uint &key, const Val &val) { s++; uint64_t b = getbit(key ^ last); vs[b].emplace_back(key, val); ms[b] = min(key, ms[b]); } pair<uint, Val> pop() { if (ms[0] == uint(-1)) { int idx = 1; while (ms[idx] == uint(-1)) idx++; last = ms[idx]; for (auto &p : vs[idx]) { uint64_t b = getbit(p.first ^ last); vs[b].emplace_back(p); ms[b] = min(p.first, ms[b]); } vs[idx].clear(); ms[idx] = uint(-1); } --s; auto res = vs[0].back(); vs[0].pop_back(); if (vs[0].empty()) ms[0] = uint(-1); return res; } }; /** * @brief Radix Heap * @docs docs/data-structure/radix-heap.md */ using namespace std; template <typename T> struct edge { int src, to; T cost; edge(int _to, T _cost) : src(-1), to(_to), cost(_cost) {} edge(int _src, int _to, T _cost) : src(_src), to(_to), cost(_cost) {} edge &operator=(const int &x) { to = x; return *this; } operator int() const { return to; } }; template <typename T> using Edges = vector<edge<T>>; template <typename T> using WeightedGraph = vector<Edges<T>>; using UnweightedGraph = vector<vector<int>>; // Input of (Unweighted) Graph UnweightedGraph graph(int N, int M = -1, bool is_directed = false, bool is_1origin = true) { UnweightedGraph g(N); if (M == -1) M = N - 1; for (int _ = 0; _ < M; _++) { int x, y; cin >> x >> y; if (is_1origin) x--, y--; g[x].push_back(y); if (!is_directed) g[y].push_back(x); } return g; } // Input of Weighted Graph template <typename T> WeightedGraph<T> wgraph(int N, int M = -1, bool is_directed = false, bool is_1origin = true) { WeightedGraph<T> g(N); if (M == -1) M = N - 1; for (int _ = 0; _ < M; _++) { int x, y; cin >> x >> y; T c; cin >> c; if (is_1origin) x--, y--; g[x].eb(x, y, c); if (!is_directed) g[y].eb(y, x, c); } return g; } // Input of Edges template <typename T> Edges<T> esgraph(int N, int M, int is_weighted = true, bool is_1origin = true) { Edges<T> es; for (int _ = 0; _ < M; _++) { int x, y; cin >> x >> y; T c; if (is_weighted) cin >> c; else c = 1; if (is_1origin) x--, y--; es.emplace_back(x, y, c); } return es; } // Input of Adjacency Matrix template <typename T> vector<vector<T>> adjgraph(int N, int M, T INF, int is_weighted = true, bool is_directed = false, bool is_1origin = true) { vector<vector<T>> d(N, vector<T>(N, INF)); for (int _ = 0; _ < M; _++) { int x, y; cin >> x >> y; T c; if (is_weighted) cin >> c; else c = 1; if (is_1origin) x--, y--; d[x][y] = c; if (!is_directed) d[y][x] = c; } return d; } // unreachable -> {-1, -1} template <typename T> vector<pair<T, int>> dijkstra_restore(WeightedGraph<T> &g, int start = 0) { int N = (int)g.size(); using P = pair<T, int>; vector<P> d(N, P{-1, -1}); RadixHeap<T, int> Q; d[start].first = 0; Q.push(0, start); while (!Q.empty()) { auto p = Q.pop(); int cur = p.second; T dc = d[cur].first; if (dc < T(p.first)) continue; for (auto dst : g[cur]) { if (d[dst].first == T(-1) || dc + dst.cost < d[dst].first) { d[dst] = P{dc + dst.cost, cur}; Q.push(dc + dst.cost, dst); } } } return d; } /* * @brief ダイクストラ法(復元付き) * @docs docs/shortest-path/dijkstra-with-restore.md **/ void solve() { ini(N, M); WeightedGraph<ll> g(N); map<P, P> m; rep(i, M) { ini(u, v, c, d); --u, --v; m[P(u, v)] = m[P(v, u)] = P(c, d); g[u].emplace_back(v, c); g[v].emplace_back(u, c); } auto d = dijkstra_restore(g); ll ans = d[N - 1].first; for (int v = N - 1; v != 0;) { int u = d[v].second; ll nc = m[P(u, v)].second; m[P(u, v)].first = m[P(v, u)].first = nc; v = u; } rep(u, N) each(e, g[u]) { e.cost = m[P(u, e)].first; } auto d2 = dijkstra_restore(g); out(ans + d2.back().first); }