結果
| 問題 |
No.1301 Strange Graph Shortest Path
|
| コンテスト | |
| ユーザー |
momohara
|
| 提出日時 | 2020-11-27 22:50:39 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 4,402 bytes |
| コンパイル時間 | 2,540 ms |
| コンパイル使用メモリ | 207,188 KB |
| 最終ジャッジ日時 | 2025-01-16 08:11:21 |
|
ジャッジサーバーID (参考情報) |
judge5 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 2 |
| other | AC * 2 WA * 31 |
ソースコード
#include <bits/stdc++.h>
using namespace std;
/*
#include <atcoder/all>
using namespace atcoder;
*/
#define all(hoge) (hoge).begin(), (hoge).end()
#define en '\n'
using ll = long long;
using ull = unsigned long long;
#define rep(i, m, n) for(ll i = (ll)(m); i < (ll)(n); ++i)
#define rep2(i, m, n) for(ll i = (ll)(n)-1; i >= (ll)(m); --i)
#define REP(i, n) rep(i, 0, n)
#define REP2(i, n) rep2(i, 0, n)
template <class T>
using vec = vector<T>;
template <class T>
using vvec = vector<vec<T>>;
typedef pair<ll, ll> P;
using tp = tuple<ll, ll, ll>;
constexpr long long INF = 1LL << 60;
constexpr int INF_INT = 1 << 25;
//constexpr long long MOD = (ll)1e9 + 7;
constexpr long long MOD = 998244353LL;
using ld = long double;
static const ld pi = 3.141592653589793L;
using Array = vector<ll>;
using Matrix = vector<Array>;
/*
#pragma GCC target("avx2")
#pragma GCC optimize("O3")
#pragma GCC optimize("unroll-loops")
*/
template <class T>
inline bool chmin(T &a, T b) {
if(a > b) {
a = b;
return true;
}
return false;
}
template <class T>
inline bool chmax(T &a, T b) {
if(a < b) {
a = b;
return true;
}
return false;
}
template <typename flow_t, typename cost_t>
struct PrimalDual {
const cost_t INF;
struct edge {
int to;
flow_t cap;
cost_t cost;
int rev;
bool isrev;
};
vector<vector<edge>> graph;
vector<cost_t> potential, min_cost;
vector<int> prevv, preve;
PrimalDual(int V) : graph(V), INF(numeric_limits<cost_t>::max()) {}
void add_edge(int from, int to, flow_t cap, cost_t cost) {
graph[from].emplace_back((edge){to, cap, cost, (int)graph[to].size(), false});
graph[to].emplace_back((edge){from, 0, -cost, (int)graph[from].size() - 1, true});
}
cost_t min_cost_flow(int s, int t, flow_t f) {
int V = (int)graph.size();
cost_t ret = 0;
using Pi = pair<cost_t, int>;
priority_queue<Pi, vector<Pi>, greater<Pi>> que;
potential.assign(V, 0);
preve.assign(V, -1);
prevv.assign(V, -1);
while(f > 0) {
min_cost.assign(V, INF);
que.emplace(0, s);
min_cost[s] = 0;
while(!que.empty()) {
Pi p = que.top();
que.pop();
if(min_cost[p.second] < p.first)
continue;
for(int i = 0; i < graph[p.second].size(); i++) {
edge &e = graph[p.second][i];
cost_t nextCost = min_cost[p.second] + e.cost + potential[p.second] - potential[e.to];
if(e.cap > 0 && min_cost[e.to] > nextCost) {
min_cost[e.to] = nextCost;
prevv[e.to] = p.second, preve[e.to] = i;
que.emplace(min_cost[e.to], e.to);
}
}
}
if(min_cost[t] == INF)
return -1;
for(int v = 0; v < V; v++)
potential[v] += min_cost[v];
flow_t addflow = f;
for(int v = t; v != s; v = prevv[v]) {
addflow = min(addflow, graph[prevv[v]][preve[v]].cap);
}
f -= addflow;
ret += addflow * potential[t];
for(int v = t; v != s; v = prevv[v]) {
edge &e = graph[prevv[v]][preve[v]];
e.cap -= addflow;
graph[v][e.rev].cap += addflow;
}
}
return ret;
}
void output() {
for(int i = 0; i < graph.size(); i++) {
for(auto &e : graph[i]) {
if(e.isrev)
continue;
auto &rev_e = graph[e.to][e.rev];
cout << i << "->" << e.to << " (flow: " << rev_e.cap << "/" << rev_e.cap + e.cap << ")" << endl;
}
}
}
};
void solve() {
int n, m;
cin >> n >> m;
PrimalDual<int, ll> pd(n);
REP(i, m) {
int u, v, c, d;
cin >> u >> v >> c >> d;
u--;
v--;
pd.add_edge(u, v, 1, c);
pd.add_edge(u, v, 1, d);
}
auto ans = pd.min_cost_flow(0, n - 1, 2);
cout << ans << en;
}
int main() {
ios::sync_with_stdio(false);
cin.tie(0);
cout.tie(0);
/*
ll t;
cin >> t;
REP(i, t - 1) {
solve();
}*/
solve();
return 0;
}
momohara