結果

問題 No.1301 Strange Graph Shortest Path
ユーザー HyadoHyado
提出日時 2020-11-27 23:00:01
言語 C++14
(gcc 12.3.0 + boost 1.83.0)
結果
WA  
実行時間 -
コード長 7,081 bytes
コンパイル時間 2,198 ms
コンパイル使用メモリ 190,620 KB
実行使用メモリ 58,200 KB
最終ジャッジ日時 2024-07-26 20:15:46
合計ジャッジ時間 13,410 ms
ジャッジサーバーID
(参考情報)
judge1 / judge5
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
6,812 KB
testcase_01 AC 2 ms
6,940 KB
testcase_02 WA -
testcase_03 WA -
testcase_04 WA -
testcase_05 WA -
testcase_06 WA -
testcase_07 WA -
testcase_08 WA -
testcase_09 WA -
testcase_10 WA -
testcase_11 WA -
testcase_12 WA -
testcase_13 WA -
testcase_14 WA -
testcase_15 WA -
testcase_16 WA -
testcase_17 WA -
testcase_18 WA -
testcase_19 WA -
testcase_20 WA -
testcase_21 WA -
testcase_22 WA -
testcase_23 WA -
testcase_24 WA -
testcase_25 WA -
testcase_26 WA -
testcase_27 WA -
testcase_28 WA -
testcase_29 WA -
testcase_30 WA -
testcase_31 WA -
testcase_32 AC 2 ms
6,940 KB
testcase_33 AC 130 ms
48,104 KB
testcase_34 WA -
権限があれば一括ダウンロードができます

ソースコード

diff #

//#pragma GCC optimize("Ofast")
//#pragma GCC optimize("unroll-loops")
//#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
using ull = unsigned long long;
using db = double;
using ld = long double;
template<typename T> using V = vector<T>;
template<typename T> using VV = vector<vector<T>>;
#define fs first
#define sc second
#define pb push_back
#define mp make_pair
#define mt make_tuple
#define eb emplace_back
#define lb lower_bound
#define ub upper_bound
#define all(v) (v).begin(),(v).end()
#define siz(v) (ll)(v).size()
#define rep(i,a,n) for(ll i=a;i<(ll)(n);++i)
#define repr(i,a,n) for(ll i=n-1;(ll)a<=i;--i)
#define ENDL '\n'
typedef pair<int,int> Pi;
typedef pair<ll,ll> PL;
constexpr ll mod = 1000000007; // 998244353;
constexpr ll INF = 1000000099;
constexpr ll LINF = (ll)(1e18 +99);
const ld PI = acos((ld)-1);
const vector<ll> dx={-1,0,1,0},dy={0,1,0,-1};
template<typename T,typename U> inline bool chmin(T& t, const U& u){if(t>u){t=u;return 1;}return 0;}
template<typename T,typename U> inline bool chmax(T& t, const U& u){if(t<u){t=u;return 1;}return 0;}
template<typename T> inline T gcd(T a,T b){return b?gcd(b,a%b):a;}
inline void yes() { cout << "Yes" << ENDL; }
inline void no() { cout << "No" << ENDL; }

template<typename T,typename Y> inline T mpow(T a, Y n) {
  T res = 1;
  for(;n;n>>=1) {
    if (n & 1) res = res * a;
    a = a * a;
  }
  return res;
}

template <typename T> V<T> prefix_sum(const V<T>& v) {
  int n = v.size();
  V<T> ret(n + 1);
  rep(i, 0, n) ret[i + 1] = ret[i] + v[i];
  return ret;
}

template<typename T>
istream& operator >> (istream& is, vector<T>& vec){
  for(auto&& x: vec) is >> x;
  return is;
}

template<typename T,typename Y>
ostream& operator<<(ostream& os,const pair<T,Y>& p){
  return os<<"{"<<p.fs<<","<<p.sc<<"}";
}

template<typename T> ostream& operator<<(ostream& os,const V<T>& v){
  os<<"{";
  for(auto e:v)os<<e<<",";
  return os<<"}";
}

template<typename ...Args>
void debug(Args&... args){
  for(auto const& x:{args...}){
    cerr<<x<<' ';
  }
  cerr<<ENDL;
}

template <class Cap, class Cost> struct mcf_graph {
 public:
  mcf_graph() {}
  mcf_graph(int n) : _n(n), g(n) {}

  int add_edge(int from, int to, Cap cap, Cost cost) {
    assert(0 <= from && from < _n);
    assert(0 <= to && to < _n);
    int m = int(pos.size());
    pos.push_back({from, int(g[from].size())});
    g[from].push_back(_edge{to, int(g[to].size()), cap, cost});
    g[to].push_back(_edge{from, int(g[from].size()) - 1, 0, -cost});
    return m;
  }

  struct edge {
    int from, to;
    Cap cap, flow;
    Cost cost;
  };

  edge get_edge(int i) {
    int m = int(pos.size());
    assert(0 <= i && i < m);
    auto _e = g[pos[i].first][pos[i].second];
    auto _re = g[_e.to][_e.rev];
    return edge{
        pos[i].first, _e.to, _e.cap + _re.cap, _re.cap, _e.cost,
    };
  }
  std::vector<edge> edges() {
    int m = int(pos.size());
    std::vector<edge> result(m);
    for(int i = 0; i < m; i++) { result[i] = get_edge(i); }
    return result;
  }

  std::pair<Cap, Cost> flow(int s, int t) {
    return flow(s, t, std::numeric_limits<Cap>::max());
  }
  std::pair<Cap, Cost> flow(int s, int t, Cap flow_limit) {
    return slope(s, t, flow_limit).back();
  }
  std::vector<std::pair<Cap, Cost>> slope(int s, int t) {
    return slope(s, t, std::numeric_limits<Cap>::max());
  }
  std::vector<std::pair<Cap, Cost>> slope(int s, int t, Cap flow_limit) {
    assert(0 <= s && s < _n);
    assert(0 <= t && t < _n);
    assert(s != t);
    // variants (C = maxcost):
    // -(n-1)C <= dual[s] <= dual[i] <= dual[t] = 0
    // reduced cost (= e.cost + dual[e.from] - dual[e.to]) >= 0 for all edge
    std::vector<Cost> dual(_n, 0), dist(_n);
    std::vector<int> pv(_n), pe(_n);
    std::vector<bool> vis(_n);
    auto dual_ref = [&]() {
      std::fill(dist.begin(), dist.end(), std::numeric_limits<Cost>::max());
      std::fill(pv.begin(), pv.end(), -1);
      std::fill(pe.begin(), pe.end(), -1);
      std::fill(vis.begin(), vis.end(), false);
      struct Q {
        Cost key;
        int to;
        bool operator<(Q r) const { return key > r.key; }
      };
      std::priority_queue<Q> que;
      dist[s] = 0;
      que.push(Q{0, s});
      while(!que.empty()) {
        int v = que.top().to;
        que.pop();
        if(vis[v]) continue;
        vis[v] = true;
        if(v == t) break;
        // dist[v] = shortest(s, v) + dual[s] - dual[v]
        // dist[v] >= 0 (all reduced cost are positive)
        // dist[v] <= (n-1)C
        for(int i = 0; i < int(g[v].size()); i++) {
          auto e = g[v][i];
          if(vis[e.to] || !e.cap) continue;
          // |-dual[e.to] + dual[v]| <= (n-1)C
          // cost <= C - -(n-1)C + 0 = nC
          Cost cost = e.cost - dual[e.to] + dual[v];
          if(dist[e.to] - dist[v] > cost) {
            dist[e.to] = dist[v] + cost;
            pv[e.to] = v;
            pe[e.to] = i;
            que.push(Q{dist[e.to], e.to});
          }
        }
      }
      if(!vis[t]) { return false; }

      for(int v = 0; v < _n; v++) {
        if(!vis[v]) continue;
        // dual[v] = dual[v] - dist[t] + dist[v]
        //         = dual[v] - (shortest(s, t) + dual[s] - dual[t]) +
        //         (shortest(s, v) + dual[s] - dual[v]) = - shortest(s, t) +
        //         dual[t] + shortest(s, v) = shortest(s, v) - shortest(s, t) >=
        //         0 - (n-1)C
        dual[v] -= dist[t] - dist[v];
      }
      return true;
    };
    Cap flow = 0;
    Cost cost = 0, prev_cost = -1;
    std::vector<std::pair<Cap, Cost>> result;
    result.push_back({flow, cost});
    while(flow < flow_limit) {
      if(!dual_ref()) break;
      Cap c = flow_limit - flow;
      for(int v = t; v != s; v = pv[v]) {
        c = std::min(c, g[pv[v]][pe[v]].cap);
      }
      for(int v = t; v != s; v = pv[v]) {
        auto& e = g[pv[v]][pe[v]];
        e.cap -= c;
        g[v][e.rev].cap += c;
      }
      Cost d = -dual[s];
      flow += c;
      cost += c * d;
      if(prev_cost == d) { result.pop_back(); }
      result.push_back({flow, cost});
      prev_cost = cost;
    }
    return result;
  }

 private:
  int _n;

  struct _edge {
    int to, rev;
    Cap cap;
    Cost cost;
  };

  std::vector<std::pair<int, int>> pos;
  std::vector<std::vector<_edge>> g;
};

signed main(){
  cin.tie(0);cerr.tie(0);ios::sync_with_stdio(false);
  cout<<fixed<<setprecision(20);

  ll n,m;cin>>n>>m;
  mcf_graph<ll,ll> mcf(n*2);
  rep(i,0,m){
    int a,b,c,d;cin>>a>>b>>c>>d;
    --a;--b;
    mcf.add_edge(n+a,n+b,1,c);
    mcf.add_edge(n+a,n+b,1,d);

    mcf.add_edge(a,n+a,2,0);
    mcf.add_edge(n+b,b,2,0);
    mcf.add_edge(b,n+a,2,0);
    mcf.add_edge(n+b,a,2,0);
  }

  
  cout<<mcf.flow(0,n-1,2).sc<<ENDL;
  //auto es=mcf.edges();
  //for(auto&& e:es)cout<<e.from<<" "<<e.to<<" "<<e.cost<<" "<<e.flow<<ENDL;

}
//! ( . _ . ) ! 
//CHECK overflow,vector_size,what to output?
//any other simpler approach?
//list all conditions, try mathematical and graphic observation
0