結果
| 問題 |
No.1299 Random Array Score
|
| コンテスト | |
| ユーザー |
Coki628
|
| 提出日時 | 2020-11-27 23:08:02 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
AC
|
| 実行時間 | 95 ms / 2,000 ms |
| コード長 | 2,231 bytes |
| コンパイル時間 | 343 ms |
| コンパイル使用メモリ | 82,588 KB |
| 実行使用メモリ | 102,332 KB |
| 最終ジャッジ日時 | 2024-07-26 19:29:08 |
| 合計ジャッジ時間 | 4,435 ms |
|
ジャッジサーバーID (参考情報) |
judge2 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 34 |
ソースコード
import sys
def input(): return sys.stdin.readline().strip()
def list2d(a, b, c): return [[c] * b for i in range(a)]
def list3d(a, b, c, d): return [[[d] * c for k in range(b)] for i in range(a)]
def list4d(a, b, c, d, e): return [[[[e] * d for k in range(c)] for k in range(b)] for i in range(a)]
def ceil(x, y=1): return int(-(-x // y))
def INT(): return int(input())
def MAP(): return map(int, input().split())
def LIST(N=None): return list(MAP()) if N is None else [INT() for i in range(N)]
def Yes(): print('Yes')
def No(): print('No')
def YES(): print('YES')
def NO(): print('NO')
sys.setrecursionlimit(10**9)
INF = 10**19
MOD = 998244353
EPS = 10**-10
def div(x, y, MOD): return x * pow(y, MOD-2, MOD) % MOD
def mat_pow(mat, init, K, MOD):
""" 行列累乗 """
def mat_dot(A, B, MOD):
""" 行列の積 """
if not isinstance(A[0], list) and not isinstance(A[0], tuple):
A = [A]
if not isinstance(B[0], list) and not isinstance(A[0], tuple):
B = [[b] for b in B]
n1 = len(A)
n2 = len(A[0])
_ = len(B)
m2 = len(B[0])
res = list2d(n1, m2, 0)
for i in range(n1):
for j in range(m2):
for k in range(n2):
res[i][j] += A[i][k] * B[k][j]
res[i][j] %= MOD
return res
def _mat_pow(mat, k, MOD):
""" 行列matをk乗する """
n = len(mat)
res = list2d(n, n, 0)
for i in range(n):
res[i][i] = 1
while k > 0:
if k & 1:
res = mat_dot(res, mat, MOD)
mat = mat_dot(mat, mat, MOD)
k >>= 1
return res
res = _mat_pow(mat, K, MOD)
res = mat_dot(res, init, MOD)
return [a[0] for a in res]
N, K = MAP()
A = LIST()
# dp0 = [0] * (K+1)
# dp1 = [0] * (K+1)
# dp0[0] = sum(A) % MOD
# dp1[0] = div(sum(A), N, MOD)
# for i in range(K):
# dp0[i+1] = dp0[i] + dp1[i]*N
# dp0[i+1] %= MOD
# dp1[i+1] = (dp0[i] + dp1[i]*N) / N
# dp1[i+1] %= MOD
# ans = dp0[K]
# print(ans)
invN = div(1, N, MOD)
mat = [
[1, N],
[invN, 1],
]
init = [sum(A) % MOD, div(sum(A), N, MOD)]
res = mat_pow(mat, init, K, MOD)
print(res[0])
Coki628