結果
問題 | No.1299 Random Array Score |
ユーザー | NyaanNyaan |
提出日時 | 2020-11-27 23:14:47 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 24 ms / 2,000 ms |
コード長 | 13,034 bytes |
コンパイル時間 | 2,580 ms |
コンパイル使用メモリ | 303,224 KB |
最終ジャッジ日時 | 2025-01-16 08:27:20 |
ジャッジサーバーID (参考情報) |
judge2 / judge3 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 34 |
ソースコード
/*** date : 2020-11-27 23:14:42*/#pragma region kyopro_template#define Nyaan_template#include <immintrin.h>#include <bits/stdc++.h>#define pb push_back#define eb emplace_back#define fi first#define se second#define each(x, v) for (auto &x : v)#define all(v) (v).begin(), (v).end()#define sz(v) ((int)(v).size())#define mem(a, val) memset(a, val, sizeof(a))#define ini(...) \int __VA_ARGS__; \in(__VA_ARGS__)#define inl(...) \long long __VA_ARGS__; \in(__VA_ARGS__)#define ins(...) \string __VA_ARGS__; \in(__VA_ARGS__)#define inc(...) \char __VA_ARGS__; \in(__VA_ARGS__)#define in2(s, t) \for (int i = 0; i < (int)s.size(); i++) { \in(s[i], t[i]); \}#define in3(s, t, u) \for (int i = 0; i < (int)s.size(); i++) { \in(s[i], t[i], u[i]); \}#define in4(s, t, u, v) \for (int i = 0; i < (int)s.size(); i++) { \in(s[i], t[i], u[i], v[i]); \}#define rep(i, N) for (long long i = 0; i < (long long)(N); i++)#define repr(i, N) for (long long i = (long long)(N)-1; i >= 0; i--)#define rep1(i, N) for (long long i = 1; i <= (long long)(N); i++)#define repr1(i, N) for (long long i = (N); (long long)(i) > 0; i--)#define reg(i, a, b) for (long long i = (a); i < (b); i++)#define die(...) \do { \out(__VA_ARGS__); \return; \} while (0)using namespace std;using ll = long long;template <class T>using V = vector<T>;using vi = vector<int>;using vl = vector<long long>;using vvi = vector<vector<int>>;using vd = V<double>;using vs = V<string>;using vvl = vector<vector<long long>>;using P = pair<long long, long long>;using vp = vector<P>;using pii = pair<int, int>;using vpi = vector<pair<int, int>>;constexpr int inf = 1001001001;constexpr long long infLL = (1LL << 61) - 1;template <typename T, typename U>inline bool amin(T &x, U y) {return (y < x) ? (x = y, true) : false;}template <typename T, typename U>inline bool amax(T &x, U y) {return (x < y) ? (x = y, true) : false;}template <typename T, typename U>ostream &operator<<(ostream &os, const pair<T, U> &p) {os << p.first << " " << p.second;return os;}template <typename T, typename U>istream &operator>>(istream &is, pair<T, U> &p) {is >> p.first >> p.second;return is;}template <typename T>ostream &operator<<(ostream &os, const vector<T> &v) {int s = (int)v.size();for (int i = 0; i < s; i++) os << (i ? " " : "") << v[i];return os;}template <typename T>istream &operator>>(istream &is, vector<T> &v) {for (auto &x : v) is >> x;return is;}void in() {}template <typename T, class... U>void in(T &t, U &... u) {cin >> t;in(u...);}void out() { cout << "\n"; }template <typename T, class... U>void out(const T &t, const U &... u) {cout << t;if (sizeof...(u)) cout << " ";out(u...);}#ifdef NyaanDebug#define trc(...) \do { \cerr << #__VA_ARGS__ << " = "; \dbg_out(__VA_ARGS__); \} while (0)#define trca(v, N) \do { \cerr << #v << " = "; \array_out(v, N); \} while (0)#define trcc(v) \do { \cerr << #v << " = {"; \each(x, v) { cerr << " " << x << ","; } \cerr << "}" << endl; \} while (0)template <typename T>void _cout(const T &c) {cerr << c;}void _cout(const int &c) {if (c == 1001001001)cerr << "inf";else if (c == -1001001001)cerr << "-inf";elsecerr << c;}void _cout(const unsigned int &c) {if (c == 1001001001)cerr << "inf";elsecerr << c;}void _cout(const long long &c) {if (c == 1001001001 || c == (1LL << 61) - 1)cerr << "inf";else if (c == -1001001001 || c == -((1LL << 61) - 1))cerr << "-inf";elsecerr << c;}void _cout(const unsigned long long &c) {if (c == 1001001001 || c == (1LL << 61) - 1)cerr << "inf";elsecerr << c;}template <typename T, typename U>void _cout(const pair<T, U> &p) {cerr << "{ ";_cout(p.fi);cerr << ", ";_cout(p.se);cerr << " } ";}template <typename T>void _cout(const vector<T> &v) {int s = v.size();cerr << "{ ";for (int i = 0; i < s; i++) {cerr << (i ? ", " : "");_cout(v[i]);}cerr << " } ";}template <typename T>void _cout(const vector<vector<T>> &v) {cerr << "[ ";for (const auto &x : v) {cerr << endl;_cout(x);cerr << ", ";}cerr << endl << " ] ";}void dbg_out() { cerr << endl; }template <typename T, class... U>void dbg_out(const T &t, const U &... u) {_cout(t);if (sizeof...(u)) cerr << ", ";dbg_out(u...);}template <typename T>void array_out(const T &v, int s) {cerr << "{ ";for (int i = 0; i < s; i++) {cerr << (i ? ", " : "");_cout(v[i]);}cerr << " } " << endl;}template <typename T>void array_out(const T &v, int H, int W) {cerr << "[ ";for (int i = 0; i < H; i++) {cerr << (i ? ", " : "");array_out(v[i], W);}cerr << " ] " << endl;}#else#define trc(...)#define trca(...)#define trcc(...)#endifinline int popcnt(unsigned long long a) { return __builtin_popcountll(a); }inline int lsb(unsigned long long a) { return __builtin_ctzll(a); }inline int msb(unsigned long long a) { return 63 - __builtin_clzll(a); }template <typename T>inline int getbit(T a, int i) {return (a >> i) & 1;}template <typename T>inline void setbit(T &a, int i) {a |= (1LL << i);}template <typename T>inline void delbit(T &a, int i) {a &= ~(1LL << i);}template <typename T>int lb(const vector<T> &v, const T &a) {return lower_bound(begin(v), end(v), a) - begin(v);}template <typename T>int ub(const vector<T> &v, const T &a) {return upper_bound(begin(v), end(v), a) - begin(v);}template <typename T>int btw(T a, T x, T b) {return a <= x && x < b;}template <typename T, typename U>T ceil(T a, U b) {return (a + b - 1) / b;}constexpr long long TEN(int n) {long long ret = 1, x = 10;while (n) {if (n & 1) ret *= x;x *= x;n >>= 1;}return ret;}template <typename T>vector<T> mkrui(const vector<T> &v) {vector<T> ret(v.size() + 1);for (int i = 0; i < int(v.size()); i++) ret[i + 1] = ret[i] + v[i];return ret;};template <typename T>vector<T> mkuni(const vector<T> &v) {vector<T> ret(v);sort(ret.begin(), ret.end());ret.erase(unique(ret.begin(), ret.end()), ret.end());return ret;}template <typename F>vector<int> mkord(int N, F f) {vector<int> ord(N);iota(begin(ord), end(ord), 0);sort(begin(ord), end(ord), f);return ord;}template <typename T = int>vector<T> mkiota(int N) {vector<T> ret(N);iota(begin(ret), end(ret), 0);return ret;}template <typename T>vector<int> mkinv(vector<T> &v) {vector<int> inv(v.size());for (int i = 0; i < (int)v.size(); i++) inv[v[i]] = i;return inv;}struct IoSetupNya {IoSetupNya() {cin.tie(nullptr);ios::sync_with_stdio(false);cout << fixed << setprecision(15);cerr << fixed << setprecision(7);}} iosetupnya;void solve();int main() { solve(); }#pragma endregionusing namespace std;template <uint32_t mod>struct LazyMontgomeryModInt {using mint = LazyMontgomeryModInt;using i32 = int32_t;using u32 = uint32_t;using u64 = uint64_t;static constexpr u32 get_r() {u32 ret = mod;for (i32 i = 0; i < 4; ++i) ret *= 2 - mod * ret;return ret;}static constexpr u32 r = get_r();static constexpr u32 n2 = -u64(mod) % mod;static_assert(r * mod == 1, "invalid, r * mod != 1");static_assert(mod < (1 << 30), "invalid, mod >= 2 ^ 30");static_assert((mod & 1) == 1, "invalid, mod % 2 == 0");u32 a;constexpr LazyMontgomeryModInt() : a(0) {}constexpr LazyMontgomeryModInt(const int64_t &b): a(reduce(u64(b % mod + mod) * n2)){};static constexpr u32 reduce(const u64 &b) {return (b + u64(u32(b) * u32(-r)) * mod) >> 32;}constexpr mint &operator+=(const mint &b) {if (i32(a += b.a - 2 * mod) < 0) a += 2 * mod;return *this;}constexpr mint &operator-=(const mint &b) {if (i32(a -= b.a) < 0) a += 2 * mod;return *this;}constexpr mint &operator*=(const mint &b) {a = reduce(u64(a) * b.a);return *this;}constexpr mint &operator/=(const mint &b) {*this *= b.inverse();return *this;}constexpr mint operator+(const mint &b) const { return mint(*this) += b; }constexpr mint operator-(const mint &b) const { return mint(*this) -= b; }constexpr mint operator*(const mint &b) const { return mint(*this) *= b; }constexpr mint operator/(const mint &b) const { return mint(*this) /= b; }constexpr bool operator==(const mint &b) const {return (a >= mod ? a - mod : a) == (b.a >= mod ? b.a - mod : b.a);}constexpr bool operator!=(const mint &b) const {return (a >= mod ? a - mod : a) != (b.a >= mod ? b.a - mod : b.a);}constexpr mint operator-() const { return mint() - mint(*this); }constexpr mint pow(u64 n) const {mint ret(1), mul(*this);while (n > 0) {if (n & 1) ret *= mul;mul *= mul;n >>= 1;}return ret;}constexpr mint inverse() const { return pow(mod - 2); }friend ostream &operator<<(ostream &os, const mint &b) {return os << b.get();}friend istream &operator>>(istream &is, mint &b) {int64_t t;is >> t;b = LazyMontgomeryModInt<mod>(t);return (is);}constexpr u32 get() const {u32 ret = reduce(a);return ret >= mod ? ret - mod : ret;}static constexpr u32 get_mod() { return mod; }};using mint = LazyMontgomeryModInt<998244353>;using vm = vector<mint>;using vvm = vector<vm>;using namespace std;template <typename T>struct Binomial {vector<T> fac_, finv_, inv_;Binomial(int MAX = 0) : fac_(MAX + 10), finv_(MAX + 10), inv_(MAX + 10) {assert(T::get_mod() != 0);MAX += 9;fac_[0] = finv_[0] = inv_[0] = 1;for (int i = 1; i <= MAX; i++) fac_[i] = fac_[i - 1] * i;finv_[MAX] = fac_[MAX].inverse();for (int i = MAX - 1; i > 0; i--) finv_[i] = finv_[i + 1] * (i + 1);for (int i = 1; i <= MAX; i++) inv_[i] = finv_[i] * fac_[i - 1];}void extend() {int n = fac_.size();T fac = fac_.back() * n;T inv = (-inv_[T::get_mod() % n]) * (T::get_mod() / n);T finv = finv_.back() * inv;fac_.push_back(fac);finv_.push_back(finv);inv_.push_back(inv);}T fac(int i) {while (i >= (int)fac_.size()) extend();return fac_[i];}T finv(int i) {while (i >= (int)finv_.size()) extend();return finv_[i];}T inv(int i) {while (i >= (int)inv_.size()) extend();return inv_[i];}T C(int n, int r) {if (n < r || r < 0) return T(0);return fac(n) * finv(n - r) * finv(r);}T C_naive(int n, int r) {if (n < r || r < 0) return T(0);T ret = T(1);r = min(r, n - r);for (int i = 1; i <= r; ++i) ret *= inv(i) * (n--);return ret;}T P(int n, int r) {if (n < r || r < 0) return T(0);return fac(n) * finv(n - r);}T H(int n, int r) {if (n < 0 || r < 0) return T(0);return r == 0 ? 1 : C(n + r - 1, r);}};Binomial<mint> C;using namespace std;template <typename T>struct BinaryIndexedTree {int N;vector<T> data;BinaryIndexedTree() = default;BinaryIndexedTree(int size) { init(size); }void init(int size) {N = size + 2;data.assign(N + 1, 0);}// get sum of [0,k]T sum(int k) const {if (k < 0) return 0; // return 0 if k < 0T ret = 0;for (++k; k > 0; k -= k & -k) ret += data[k];return ret;}// getsum of [l,r]inline T sum(int l, int r) const { return sum(r) - sum(l - 1); }// get value of kinline T operator[](int k) const { return sum(k) - sum(k - 1); }// data[k] += xvoid add(int k, T x) {for (++k; k < N; k += k & -k) data[k] += x;}// range add x to [l,r]void imos(int l, int r, T x) {add(l, x);add(r + 1, -x);}// minimize i s.t. sum(i) >= wint lower_bound(T w) {if (w <= 0) return 0;int x = 0;for (int k = 1 << __lg(N); k; k >>= 1) {if (x + k <= N - 1 && data[x + k] < w) {w -= data[x + k];x += k;}}return x;}// minimize i s.t. sum(i) > wint upper_bound(T w) {if (w < 0) return 0;int x = 0;for (int k = 1 << __lg(N); k; k >>= 1) {if (x + k <= N - 1 && data[x + k] <= w) {w -= data[x + k];x += k;}}return x;}};/*** @brief Binary Indexed Tree(Fenwick Tree)* @docs docs/data-structure/binary-indexed-tree.md*/void solve() {inl(N,K);vl a(N);in(a);mint sm=0;each(x,a)sm+=x;out(sm*mint(2).pow(K));}