結果

問題 No.1299 Random Array Score
ユーザー NyaanNyaanNyaanNyaan
提出日時 2020-11-27 23:14:47
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 24 ms / 2,000 ms
コード長 13,034 bytes
コンパイル時間 2,580 ms
コンパイル使用メモリ 303,224 KB
最終ジャッジ日時 2025-01-16 08:27:20
ジャッジサーバーID
(参考情報)
judge2 / judge3
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 34
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

/**
* date : 2020-11-27 23:14:42
*/
#pragma region kyopro_template
#define Nyaan_template
#include <immintrin.h>
#include <bits/stdc++.h>
#define pb push_back
#define eb emplace_back
#define fi first
#define se second
#define each(x, v) for (auto &x : v)
#define all(v) (v).begin(), (v).end()
#define sz(v) ((int)(v).size())
#define mem(a, val) memset(a, val, sizeof(a))
#define ini(...) \
int __VA_ARGS__; \
in(__VA_ARGS__)
#define inl(...) \
long long __VA_ARGS__; \
in(__VA_ARGS__)
#define ins(...) \
string __VA_ARGS__; \
in(__VA_ARGS__)
#define inc(...) \
char __VA_ARGS__; \
in(__VA_ARGS__)
#define in2(s, t) \
for (int i = 0; i < (int)s.size(); i++) { \
in(s[i], t[i]); \
}
#define in3(s, t, u) \
for (int i = 0; i < (int)s.size(); i++) { \
in(s[i], t[i], u[i]); \
}
#define in4(s, t, u, v) \
for (int i = 0; i < (int)s.size(); i++) { \
in(s[i], t[i], u[i], v[i]); \
}
#define rep(i, N) for (long long i = 0; i < (long long)(N); i++)
#define repr(i, N) for (long long i = (long long)(N)-1; i >= 0; i--)
#define rep1(i, N) for (long long i = 1; i <= (long long)(N); i++)
#define repr1(i, N) for (long long i = (N); (long long)(i) > 0; i--)
#define reg(i, a, b) for (long long i = (a); i < (b); i++)
#define die(...) \
do { \
out(__VA_ARGS__); \
return; \
} while (0)
using namespace std;
using ll = long long;
template <class T>
using V = vector<T>;
using vi = vector<int>;
using vl = vector<long long>;
using vvi = vector<vector<int>>;
using vd = V<double>;
using vs = V<string>;
using vvl = vector<vector<long long>>;
using P = pair<long long, long long>;
using vp = vector<P>;
using pii = pair<int, int>;
using vpi = vector<pair<int, int>>;
constexpr int inf = 1001001001;
constexpr long long infLL = (1LL << 61) - 1;
template <typename T, typename U>
inline bool amin(T &x, U y) {
return (y < x) ? (x = y, true) : false;
}
template <typename T, typename U>
inline bool amax(T &x, U y) {
return (x < y) ? (x = y, true) : false;
}
template <typename T, typename U>
ostream &operator<<(ostream &os, const pair<T, U> &p) {
os << p.first << " " << p.second;
return os;
}
template <typename T, typename U>
istream &operator>>(istream &is, pair<T, U> &p) {
is >> p.first >> p.second;
return is;
}
template <typename T>
ostream &operator<<(ostream &os, const vector<T> &v) {
int s = (int)v.size();
for (int i = 0; i < s; i++) os << (i ? " " : "") << v[i];
return os;
}
template <typename T>
istream &operator>>(istream &is, vector<T> &v) {
for (auto &x : v) is >> x;
return is;
}
void in() {}
template <typename T, class... U>
void in(T &t, U &... u) {
cin >> t;
in(u...);
}
void out() { cout << "\n"; }
template <typename T, class... U>
void out(const T &t, const U &... u) {
cout << t;
if (sizeof...(u)) cout << " ";
out(u...);
}
#ifdef NyaanDebug
#define trc(...) \
do { \
cerr << #__VA_ARGS__ << " = "; \
dbg_out(__VA_ARGS__); \
} while (0)
#define trca(v, N) \
do { \
cerr << #v << " = "; \
array_out(v, N); \
} while (0)
#define trcc(v) \
do { \
cerr << #v << " = {"; \
each(x, v) { cerr << " " << x << ","; } \
cerr << "}" << endl; \
} while (0)
template <typename T>
void _cout(const T &c) {
cerr << c;
}
void _cout(const int &c) {
if (c == 1001001001)
cerr << "inf";
else if (c == -1001001001)
cerr << "-inf";
else
cerr << c;
}
void _cout(const unsigned int &c) {
if (c == 1001001001)
cerr << "inf";
else
cerr << c;
}
void _cout(const long long &c) {
if (c == 1001001001 || c == (1LL << 61) - 1)
cerr << "inf";
else if (c == -1001001001 || c == -((1LL << 61) - 1))
cerr << "-inf";
else
cerr << c;
}
void _cout(const unsigned long long &c) {
if (c == 1001001001 || c == (1LL << 61) - 1)
cerr << "inf";
else
cerr << c;
}
template <typename T, typename U>
void _cout(const pair<T, U> &p) {
cerr << "{ ";
_cout(p.fi);
cerr << ", ";
_cout(p.se);
cerr << " } ";
}
template <typename T>
void _cout(const vector<T> &v) {
int s = v.size();
cerr << "{ ";
for (int i = 0; i < s; i++) {
cerr << (i ? ", " : "");
_cout(v[i]);
}
cerr << " } ";
}
template <typename T>
void _cout(const vector<vector<T>> &v) {
cerr << "[ ";
for (const auto &x : v) {
cerr << endl;
_cout(x);
cerr << ", ";
}
cerr << endl << " ] ";
}
void dbg_out() { cerr << endl; }
template <typename T, class... U>
void dbg_out(const T &t, const U &... u) {
_cout(t);
if (sizeof...(u)) cerr << ", ";
dbg_out(u...);
}
template <typename T>
void array_out(const T &v, int s) {
cerr << "{ ";
for (int i = 0; i < s; i++) {
cerr << (i ? ", " : "");
_cout(v[i]);
}
cerr << " } " << endl;
}
template <typename T>
void array_out(const T &v, int H, int W) {
cerr << "[ ";
for (int i = 0; i < H; i++) {
cerr << (i ? ", " : "");
array_out(v[i], W);
}
cerr << " ] " << endl;
}
#else
#define trc(...)
#define trca(...)
#define trcc(...)
#endif
inline int popcnt(unsigned long long a) { return __builtin_popcountll(a); }
inline int lsb(unsigned long long a) { return __builtin_ctzll(a); }
inline int msb(unsigned long long a) { return 63 - __builtin_clzll(a); }
template <typename T>
inline int getbit(T a, int i) {
return (a >> i) & 1;
}
template <typename T>
inline void setbit(T &a, int i) {
a |= (1LL << i);
}
template <typename T>
inline void delbit(T &a, int i) {
a &= ~(1LL << i);
}
template <typename T>
int lb(const vector<T> &v, const T &a) {
return lower_bound(begin(v), end(v), a) - begin(v);
}
template <typename T>
int ub(const vector<T> &v, const T &a) {
return upper_bound(begin(v), end(v), a) - begin(v);
}
template <typename T>
int btw(T a, T x, T b) {
return a <= x && x < b;
}
template <typename T, typename U>
T ceil(T a, U b) {
return (a + b - 1) / b;
}
constexpr long long TEN(int n) {
long long ret = 1, x = 10;
while (n) {
if (n & 1) ret *= x;
x *= x;
n >>= 1;
}
return ret;
}
template <typename T>
vector<T> mkrui(const vector<T> &v) {
vector<T> ret(v.size() + 1);
for (int i = 0; i < int(v.size()); i++) ret[i + 1] = ret[i] + v[i];
return ret;
};
template <typename T>
vector<T> mkuni(const vector<T> &v) {
vector<T> ret(v);
sort(ret.begin(), ret.end());
ret.erase(unique(ret.begin(), ret.end()), ret.end());
return ret;
}
template <typename F>
vector<int> mkord(int N, F f) {
vector<int> ord(N);
iota(begin(ord), end(ord), 0);
sort(begin(ord), end(ord), f);
return ord;
}
template <typename T = int>
vector<T> mkiota(int N) {
vector<T> ret(N);
iota(begin(ret), end(ret), 0);
return ret;
}
template <typename T>
vector<int> mkinv(vector<T> &v) {
vector<int> inv(v.size());
for (int i = 0; i < (int)v.size(); i++) inv[v[i]] = i;
return inv;
}
struct IoSetupNya {
IoSetupNya() {
cin.tie(nullptr);
ios::sync_with_stdio(false);
cout << fixed << setprecision(15);
cerr << fixed << setprecision(7);
}
} iosetupnya;
void solve();
int main() { solve(); }
#pragma endregion
using namespace std;
template <uint32_t mod>
struct LazyMontgomeryModInt {
using mint = LazyMontgomeryModInt;
using i32 = int32_t;
using u32 = uint32_t;
using u64 = uint64_t;
static constexpr u32 get_r() {
u32 ret = mod;
for (i32 i = 0; i < 4; ++i) ret *= 2 - mod * ret;
return ret;
}
static constexpr u32 r = get_r();
static constexpr u32 n2 = -u64(mod) % mod;
static_assert(r * mod == 1, "invalid, r * mod != 1");
static_assert(mod < (1 << 30), "invalid, mod >= 2 ^ 30");
static_assert((mod & 1) == 1, "invalid, mod % 2 == 0");
u32 a;
constexpr LazyMontgomeryModInt() : a(0) {}
constexpr LazyMontgomeryModInt(const int64_t &b)
: a(reduce(u64(b % mod + mod) * n2)){};
static constexpr u32 reduce(const u64 &b) {
return (b + u64(u32(b) * u32(-r)) * mod) >> 32;
}
constexpr mint &operator+=(const mint &b) {
if (i32(a += b.a - 2 * mod) < 0) a += 2 * mod;
return *this;
}
constexpr mint &operator-=(const mint &b) {
if (i32(a -= b.a) < 0) a += 2 * mod;
return *this;
}
constexpr mint &operator*=(const mint &b) {
a = reduce(u64(a) * b.a);
return *this;
}
constexpr mint &operator/=(const mint &b) {
*this *= b.inverse();
return *this;
}
constexpr mint operator+(const mint &b) const { return mint(*this) += b; }
constexpr mint operator-(const mint &b) const { return mint(*this) -= b; }
constexpr mint operator*(const mint &b) const { return mint(*this) *= b; }
constexpr mint operator/(const mint &b) const { return mint(*this) /= b; }
constexpr bool operator==(const mint &b) const {
return (a >= mod ? a - mod : a) == (b.a >= mod ? b.a - mod : b.a);
}
constexpr bool operator!=(const mint &b) const {
return (a >= mod ? a - mod : a) != (b.a >= mod ? b.a - mod : b.a);
}
constexpr mint operator-() const { return mint() - mint(*this); }
constexpr mint pow(u64 n) const {
mint ret(1), mul(*this);
while (n > 0) {
if (n & 1) ret *= mul;
mul *= mul;
n >>= 1;
}
return ret;
}
constexpr mint inverse() const { return pow(mod - 2); }
friend ostream &operator<<(ostream &os, const mint &b) {
return os << b.get();
}
friend istream &operator>>(istream &is, mint &b) {
int64_t t;
is >> t;
b = LazyMontgomeryModInt<mod>(t);
return (is);
}
constexpr u32 get() const {
u32 ret = reduce(a);
return ret >= mod ? ret - mod : ret;
}
static constexpr u32 get_mod() { return mod; }
};
using mint = LazyMontgomeryModInt<998244353>;
using vm = vector<mint>;
using vvm = vector<vm>;
using namespace std;
template <typename T>
struct Binomial {
vector<T> fac_, finv_, inv_;
Binomial(int MAX = 0) : fac_(MAX + 10), finv_(MAX + 10), inv_(MAX + 10) {
assert(T::get_mod() != 0);
MAX += 9;
fac_[0] = finv_[0] = inv_[0] = 1;
for (int i = 1; i <= MAX; i++) fac_[i] = fac_[i - 1] * i;
finv_[MAX] = fac_[MAX].inverse();
for (int i = MAX - 1; i > 0; i--) finv_[i] = finv_[i + 1] * (i + 1);
for (int i = 1; i <= MAX; i++) inv_[i] = finv_[i] * fac_[i - 1];
}
void extend() {
int n = fac_.size();
T fac = fac_.back() * n;
T inv = (-inv_[T::get_mod() % n]) * (T::get_mod() / n);
T finv = finv_.back() * inv;
fac_.push_back(fac);
finv_.push_back(finv);
inv_.push_back(inv);
}
T fac(int i) {
while (i >= (int)fac_.size()) extend();
return fac_[i];
}
T finv(int i) {
while (i >= (int)finv_.size()) extend();
return finv_[i];
}
T inv(int i) {
while (i >= (int)inv_.size()) extend();
return inv_[i];
}
T C(int n, int r) {
if (n < r || r < 0) return T(0);
return fac(n) * finv(n - r) * finv(r);
}
T C_naive(int n, int r) {
if (n < r || r < 0) return T(0);
T ret = T(1);
r = min(r, n - r);
for (int i = 1; i <= r; ++i) ret *= inv(i) * (n--);
return ret;
}
T P(int n, int r) {
if (n < r || r < 0) return T(0);
return fac(n) * finv(n - r);
}
T H(int n, int r) {
if (n < 0 || r < 0) return T(0);
return r == 0 ? 1 : C(n + r - 1, r);
}
};
Binomial<mint> C;
using namespace std;
template <typename T>
struct BinaryIndexedTree {
int N;
vector<T> data;
BinaryIndexedTree() = default;
BinaryIndexedTree(int size) { init(size); }
void init(int size) {
N = size + 2;
data.assign(N + 1, 0);
}
// get sum of [0,k]
T sum(int k) const {
if (k < 0) return 0; // return 0 if k < 0
T ret = 0;
for (++k; k > 0; k -= k & -k) ret += data[k];
return ret;
}
// getsum of [l,r]
inline T sum(int l, int r) const { return sum(r) - sum(l - 1); }
// get value of k
inline T operator[](int k) const { return sum(k) - sum(k - 1); }
// data[k] += x
void add(int k, T x) {
for (++k; k < N; k += k & -k) data[k] += x;
}
// range add x to [l,r]
void imos(int l, int r, T x) {
add(l, x);
add(r + 1, -x);
}
// minimize i s.t. sum(i) >= w
int lower_bound(T w) {
if (w <= 0) return 0;
int x = 0;
for (int k = 1 << __lg(N); k; k >>= 1) {
if (x + k <= N - 1 && data[x + k] < w) {
w -= data[x + k];
x += k;
}
}
return x;
}
// minimize i s.t. sum(i) > w
int upper_bound(T w) {
if (w < 0) return 0;
int x = 0;
for (int k = 1 << __lg(N); k; k >>= 1) {
if (x + k <= N - 1 && data[x + k] <= w) {
w -= data[x + k];
x += k;
}
}
return x;
}
};
/**
* @brief Binary Indexed Tree(Fenwick Tree)
* @docs docs/data-structure/binary-indexed-tree.md
*/
void solve() {
inl(N,K);
vl a(N);
in(a);
mint sm=0;
each(x,a)sm+=x;
out(sm*mint(2).pow(K));
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0