結果
問題 | No.1301 Strange Graph Shortest Path |
ユーザー |
![]() |
提出日時 | 2020-11-27 23:15:36 |
言語 | C++11 (gcc 13.3.0) |
結果 |
TLE
(最新)
AC
(最初)
|
実行時間 | - |
コード長 | 2,857 bytes |
コンパイル時間 | 922 ms |
コンパイル使用メモリ | 91,916 KB |
実行使用メモリ | 57,856 KB |
最終ジャッジ日時 | 2024-07-26 20:26:29 |
合計ジャッジ時間 | 18,597 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge5 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 2 |
other | AC * 32 TLE * 1 |
ソースコード
#include <iostream>#include <cstdio>#include <cmath>#include <ctime>#include <cstdlib>#include <cassert>#include <vector>#include <list>#include <stack>#include <queue>#include <deque>#include <map>#include <set>#include <bitset>#include <string>#include <algorithm>#include <utility>#include <complex>#define rep(x, s, t) for(llint (x) = (s); (x) <= (t); (x)++)#define chmin(x, y) (x) = min((x), (y))#define chmax(x, y) (x) = max((x), (y))#define all(x) (x).begin(),(x).end()#define inf 1e15#define mod 998244353using namespace std;typedef long long llint;typedef long long ll;typedef pair<llint, llint> P;struct edge{int to, cap, cost, rev;edge(){}edge(llint a, llint b, llint c, llint d){to = a, cap = b, cost = c, rev = d;}};int n, m, F;int S, T;vector<edge> G[500005];llint dist[500005];int prevv[500005], preve[500005];llint h[500005];void BellmanFord(){for(int i = 0; i <= T; i++) dist[i] = inf;dist[S] = 0, prevv[S] = -1;bool update = true;while(update){update = false;for(int i = 0; i <= T; i++){for(int j = 0; j < G[i].size(); j++){if(G[i][j].cap == 0) continue;if(dist[G[i][j].to] > dist[i] + G[i][j].cost){dist[G[i][j].to] = dist[i] + G[i][j].cost;prevv[G[i][j].to] = i;preve[G[i][j].to] = j;update = true;}}}}}void Dijkstra(){for(int i = 0; i <= T; i++) dist[i] = inf;dist[S] = 0, prevv[S] = -1;priority_queue< P, vector<P>, greater<P> > Q;Q.push( make_pair(0, S) );llint v, d;while(Q.size()){d = Q.top().first;v = Q.top().second;Q.pop();if(dist[v] < d) continue;for(int i = 0; i < G[v].size(); i++){if(G[v][i].cap == 0) continue;llint u = G[v][i].to, c = G[v][i].cost;if(dist[u] > d + c){dist[u] = d + c;prevv[u] = v;preve[u] = i;Q.push( make_pair(dist[u], u) );}}}}void add_edge(llint from, llint to, llint cap, llint cost){G[from].push_back( edge(to, cap, cost, G[to].size()) );G[to].push_back( edge(from, 0, -cost, G[from].size()-1) );}int main(void){ios::sync_with_stdio(0);cin.tie(0);cin >> n >> m;ll u, v, c, d;rep(i, 1, m){cin >> u >> v >> c >> d ;add_edge(u, n+i, 2, 0);add_edge(v, n+i, 2, 0);add_edge(n+i, n+m+i, 1, c);add_edge(n+i, n+m+i, 1, d);add_edge(n+m+i, u, 2, 0);add_edge(n+m+i, v, 2, 0);}S = 1, T = n+2*m+1;add_edge(n, T, 2, 0);int f = 2; ll ans = 0;while(f > 0){Dijkstra();if(dist[T] >= inf) break;int p = T, flow = f;while(prevv[p] != -1){flow = min(flow, G[prevv[p]][preve[p]].cap);p = prevv[p];}p = T;while(prevv[p] != -1){G[prevv[p]][preve[p]].cap -= flow;G[p][G[prevv[p]][preve[p]].rev].cap += flow;p = prevv[p];}f -= flow;ans += dist[T] * flow;}if(f > 0) ans = -1;cout << ans << endl;return 0;}