結果
| 問題 | No.1301 Strange Graph Shortest Path | 
| コンテスト | |
| ユーザー |  wolgnik | 
| 提出日時 | 2020-11-27 23:29:22 | 
| 言語 | PyPy3 (7.3.15) | 
| 結果 | 
                                AC
                                 
                             | 
| 実行時間 | 1,136 ms / 3,000 ms | 
| コード長 | 2,835 bytes | 
| コンパイル時間 | 557 ms | 
| コンパイル使用メモリ | 82,100 KB | 
| 実行使用メモリ | 222,696 KB | 
| 最終ジャッジ日時 | 2024-09-13 01:07:12 | 
| 合計ジャッジ時間 | 30,817 ms | 
| ジャッジサーバーID (参考情報) | judge1 / judge3 | 
(要ログイン)
| ファイルパターン | 結果 | 
|---|---|
| sample | AC * 2 | 
| other | AC * 33 | 
ソースコード
import sys
input = sys.stdin.readline
N, M = map(int, input().split())
from heapq import heappop, heappush, heapify
class MinCostFlow():
  def __init__(self, n):
    self.n = n
    self.graph = [[] for _ in range(n)]
    self.pos = []
  def add_edge(self, fr, to, cap, cost):
    m = len(self.pos)
    self.pos.append((fr, len(self.graph[fr])))
    self.graph[fr].append([to, len(self.graph[to]), cap, cost])
    self.graph[to].append([fr, len(self.graph[fr]) - 1, 0, -cost])
    return m
  def get_edge(self, idx):
    to, rev, cap, cost = self.graph[self.pos[idx][0]][self.pos[idx][1]]
    rev_to, rev_rev, rev_cap, rev_cost = self.graph[to][rev]
    return self.pos[idx][0], to, cap + rev_cap, rev_cap, cost
  def edges(self):
    for i in range(len(self.pos)):
      yield self.get_edge(i)
  def dual_ref(self, s, t):
    dist = [2**63 - 1] * self.n
    dist[s] = 0
    vis = [0] * self.n
    self.pv = [-1] * self.n
    self.pe = [-1] * self.n
    queue = []
    heappush(queue, (0, s))
    while queue:
      k, v = heappop(queue)
      if vis[v]: continue
      vis[v] = True
      if v == t: break
      for i in range(len(self.graph[v])):
        to, rev, cap, cost = self.graph[v][i]
        if vis[to] or cap == 0: continue
        cost += self.dual[v] - self.dual[to]
        if dist[to] - dist[v] > cost:
          dist[to] = dist[v] + cost
          self.pv[to] = v
          self.pe[to] = i
          heappush(queue, (dist[to], to))
    if not vis[t]: return False
    for v in range(self.n):
      if not vis[v]: continue
      self.dual[v] -= dist[t] - dist[v]
    return True
  def flow(self, s, t): return self.flow_with_limit(s, t, 2**63 - 1)
  def flow_with_limit(self, s, t, limit): return self.slope_with_limit(s, t, limit)[-1]
  def slope(self, s, t): return self.slope_with_limit(s, t, 2**63 - 1)
  def slope_with_limit(self, s, t, limit):
    flow = 0
    cost = 0
    prev_cost = -1
    res = [(flow, cost)]
    self.dual = [0] * self.n
    while flow < limit:
      if not self.dual_ref(s, t): break
      c = limit - flow
      v = t
      while v != s:
        c = min(c, self.graph[self.pv[v]][self.pe[v]][2])
        v = self.pv[v]
      v = t
      while v != s:
        to, rev, cap, _ = self.graph[self.pv[v]][self.pe[v]]
        self.graph[self.pv[v]][self.pe[v]][2] -= c
        self.graph[v][rev][2] += c
        v = self.pv[v]
      d = -self.dual[s]
      flow += c
      cost += c * d
      if prev_cost == d: res.pop()
      res.append((flow, cost))
      prev_cost = cost
    return res
mcf = MinCostFlow(N)
edges = []
for _ in range(M):
  u, v, c, d = map(int, input().split())
  edges.append((u, v, c, d))
  mcf.add_edge(u - 1, v - 1, 1, c)
  mcf.add_edge(v - 1, u - 1, 1, c)
  mcf.add_edge(u - 1, v - 1, 1, d)
  mcf.add_edge(v - 1, u - 1, 1, d)
print(mcf.flow_with_limit(0, N - 1, 2)[1])
            
            
            
        