結果

問題 No.1301 Strange Graph Shortest Path
ユーザー ygd.ygd.
提出日時 2020-11-27 23:30:11
言語 PyPy3
(7.3.15)
結果
WA  
実行時間 -
コード長 1,272 bytes
コンパイル時間 445 ms
コンパイル使用メモリ 82,392 KB
実行使用メモリ 135,088 KB
最終ジャッジ日時 2024-09-13 01:07:39
合計ジャッジ時間 24,464 ms
ジャッジサーバーID
(参考情報)
judge5 / judge1
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 37 ms
53,788 KB
testcase_01 AC 37 ms
53,928 KB
testcase_02 WA -
testcase_03 AC 614 ms
115,808 KB
testcase_04 AC 755 ms
133,372 KB
testcase_05 AC 543 ms
114,948 KB
testcase_06 AC 715 ms
128,380 KB
testcase_07 AC 691 ms
122,820 KB
testcase_08 AC 594 ms
115,516 KB
testcase_09 AC 695 ms
126,164 KB
testcase_10 WA -
testcase_11 AC 750 ms
127,712 KB
testcase_12 AC 724 ms
128,512 KB
testcase_13 AC 666 ms
121,376 KB
testcase_14 AC 701 ms
123,788 KB
testcase_15 AC 674 ms
121,824 KB
testcase_16 AC 780 ms
134,784 KB
testcase_17 AC 714 ms
124,828 KB
testcase_18 AC 637 ms
120,984 KB
testcase_19 AC 721 ms
127,820 KB
testcase_20 AC 745 ms
129,800 KB
testcase_21 AC 671 ms
122,776 KB
testcase_22 AC 704 ms
132,092 KB
testcase_23 AC 663 ms
122,064 KB
testcase_24 AC 710 ms
130,192 KB
testcase_25 AC 773 ms
131,564 KB
testcase_26 AC 712 ms
125,208 KB
testcase_27 AC 745 ms
127,620 KB
testcase_28 AC 581 ms
118,004 KB
testcase_29 WA -
testcase_30 AC 784 ms
129,928 KB
testcase_31 AC 758 ms
131,260 KB
testcase_32 WA -
testcase_33 WA -
testcase_34 AC 621 ms
124,432 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

from heapq import heapify, heappop, heappush
N,M = map(int,input().split()); INF = float("inf")
Graph = [[] for _ in range(N)]
INPUT = []
for i in range(M):
    s,g,x,y = map(int,input().split()); INPUT.append((s,g,x,y))
    s-=1;g-=1
    Graph[s].append((x,g))
    Graph[g].append((x,s))

def dijkstra_heap2(s,G):
  #S:start, V: node, E: Edge, G: Graph
  V = len(G)
  d = [INF for _ in range(V)]
  d[s] = 0
  prev = [0]*V
  prev[s] = -1
  PQ = []
  heappush(PQ,(0,s))
  
  while PQ:
    c,v = heappop(PQ)
    if d[v] < c:
      continue
    d[v] = c
    for cost,u in G[v]:
      if d[u] <= cost + d[v]:
        continue
      d[u] = cost + d[v]
      prev[u] = v
      heappush(PQ,(d[u], u))
  
  return d, prev

D,PREV = dijkstra_heap2(0,Graph)
#print(D)
ans = D[N-1]
#print(PREV)
now = N-1
Used = set()
while now != 0:
    mae = now
    now = PREV[mae]
    Used.add((mae,now))
#print(Used)
Graph.clear()
New_Graph = [[] for _ in range(N)]
for P in INPUT:
    a,b,x,y = P
    a-=1;b-=1
    if (a,b) in Used or (b,a) in Used:
        New_Graph[a].append((y,b))
        New_Graph[b].append((y,a))
    else:
        New_Graph[a].append((x,b))
        New_Graph[b].append((x,a))
#print(New_Graph)
RD, RPREV = dijkstra_heap2(N-1,New_Graph)
#print(RD)
ans += RD[0]
print(ans)
0