結果

問題 No.1301 Strange Graph Shortest Path
ユーザー Gosu_HirooGosu_Hiroo
提出日時 2020-11-27 23:43:28
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 201 ms / 3,000 ms
コード長 16,264 bytes
コンパイル時間 2,586 ms
コンパイル使用メモリ 225,200 KB
実行使用メモリ 36,316 KB
最終ジャッジ日時 2024-07-26 19:43:19
合計ジャッジ時間 9,530 ms
ジャッジサーバーID
(参考情報)
judge5 / judge1
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
6,816 KB
testcase_01 AC 2 ms
6,944 KB
testcase_02 AC 150 ms
35,972 KB
testcase_03 AC 121 ms
31,992 KB
testcase_04 AC 183 ms
34,756 KB
testcase_05 AC 126 ms
35,492 KB
testcase_06 AC 169 ms
32,396 KB
testcase_07 AC 152 ms
34,368 KB
testcase_08 AC 125 ms
32,512 KB
testcase_09 AC 132 ms
31,148 KB
testcase_10 AC 121 ms
32,012 KB
testcase_11 AC 157 ms
33,452 KB
testcase_12 AC 161 ms
33,368 KB
testcase_13 AC 142 ms
36,116 KB
testcase_14 AC 163 ms
31,060 KB
testcase_15 AC 136 ms
31,700 KB
testcase_16 AC 179 ms
34,636 KB
testcase_17 AC 157 ms
36,316 KB
testcase_18 AC 149 ms
33,596 KB
testcase_19 AC 141 ms
32,596 KB
testcase_20 AC 162 ms
31,420 KB
testcase_21 AC 152 ms
35,552 KB
testcase_22 AC 180 ms
32,312 KB
testcase_23 AC 141 ms
35,916 KB
testcase_24 AC 181 ms
32,412 KB
testcase_25 AC 175 ms
34,852 KB
testcase_26 AC 151 ms
33,608 KB
testcase_27 AC 140 ms
33,440 KB
testcase_28 AC 129 ms
35,284 KB
testcase_29 AC 201 ms
34,000 KB
testcase_30 AC 158 ms
34,560 KB
testcase_31 AC 165 ms
34,264 KB
testcase_32 AC 2 ms
6,940 KB
testcase_33 AC 97 ms
29,512 KB
testcase_34 AC 153 ms
36,272 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

/**
 * code generated by JHelper
 * More info: https://github.com/AlexeyDmitriev/JHelper
 * @author Gosu_Hiroo
 */

#include <bits/stdc++.h>

using namespace std;
using ll = long long;
template<typename T, typename U = T>
using P = pair<T, U>;

//#pragma GCC optimize("O3")
//#pragma GCC target("avx2")
//#pragma GCC target("avx512f")
//#pragma GCC optimize("unroll-loops")
//#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")
//#pragma GCC optimize("Ofast")

#define V vector
#define G(size_1) vector<vector<int>>(size_1, vector<int>())
#define SZ(x) ((long long)(x).size())
#define READ ({long long t;cin >> t;t;})

#define FOR(i, __begin, __end) for (auto i = (__begin) - ((__begin) > (__end)); i != (__end) - ((__begin) > (__end)); i += 1 - 2 * ((__begin) > (__end)))
#define REP(i, __end) for (auto i = decltype(__end){0}; i < (__end); ++i)
#define ALL(x) (x).begin(),(x).end()
#define RALL(x) (x).rbegin(),(x).rend()
#define F first
#define S second
#define y0 y3487465
#define y1 y8687969
#define j0 j1347829
#define j1 j234892
#define BIT(n) (1LL<<(n))
#define UNIQUE(v) v.erase( unique(v.begin(), v.end()), v.end() );
#define EB emplace_back
#define PB push_back
#define fcout cout << fixed << setprecision(12)
#define fcerr cerr << fixed << setprecision(12)
#define print(x) cout << (x) << '\n'
#define printE(x) cout << (x) << '\n';
#define fprint(x) cout << fixed << setprecision(12) << (x) << '\n';
# define BYE(a) do { cout << (a) << endl; return ; } while (false)
#define LB lower_bound
#define UB upper_bound
#define LBI(c, x) distance((c).begin(), lower_bound((c).begin(), (c).end(), (x)))
#define UBI(c, x) distance((c).begin(), upper_bound((c).begin(), (c).end(), (x)))

#ifdef DEBUG
#define DBG(args...) { string _s = #args; replace(_s.begin(), _s.end(), ',', ' '); stringstream _ss(_s); istream_iterator<string> _it(_ss); _err(cerr,_it, args); }
#define ERR(args...) { string _s = #args; replace(_s.begin(), _s.end(), ',', ' '); stringstream _ss(_s); istream_iterator<string> _it(_ss); _err(std::cerr,_it, args); }
#else
#define DBG(args...) {};
#define ERR(args...) {};
#endif

void _err(std::ostream& cerr, istream_iterator<string> it){cerr << endl;}

template<typename T, typename... Args>
void _err(std::ostream& cerr, istream_iterator<string> it, T a, Args... args){
    cerr << *it << " = " << a << "  ";
    _err(cerr, ++it, args...);
}

namespace aux{
    template<std::size_t...>
    struct seq{
    };

    template<std::size_t N, std::size_t... Is>
    struct gen_seq : gen_seq<N - 1, N - 1, Is...>{
    };

    template<std::size_t... Is>
    struct gen_seq<0, Is...> : seq<Is...>{
    };

    template<class Ch, class Tr, class Tuple, std::size_t... Is>
    void print_tuple(std::basic_ostream<Ch, Tr>& os, Tuple const& t, seq<Is...>){
        using swallow = int[];
        (void) swallow{0, (void(os << (Is == 0 ? "" : ",") << std::get<Is>(t)), 0)...};
    }

    template<class Ch, class Tr, class Tuple, std::size_t... Is>
    void read_tuple(std::basic_istream<Ch, Tr>& os, Tuple& t, seq<Is...>){
        using swallow = int[];
        (void) swallow{0, (void(os >> std::get<Is>(t)), 0)...};
    }
} // aux::

template<class Ch, class Tr, class... Args>
auto operator<<(std::basic_ostream<Ch, Tr>& os, std::tuple<Args...> const& t)
-> std::basic_ostream<Ch, Tr>&{
    os << "(";
    aux::print_tuple(os, t, aux::gen_seq<sizeof...(Args)>());
    return os << ")";
}

template<class Ch, class Tr, class... Args>
auto operator>>(std::basic_istream<Ch, Tr>& os, std::tuple<Args...>& t)
-> std::basic_istream<Ch, Tr>&{
    aux::read_tuple(os, t, aux::gen_seq<sizeof...(Args)>());
    return os;
}

template<class T>
inline bool chmax(T& a, const T& b){
    if(a < b){
        a = b;
        return 1;
    }
    return 0;
}

template<class T>
inline bool chmin(T& a, const T& b){
    if(b < a){
        a = b;
        return 1;
    }
    return 0;
}

template<typename T, typename U>
istream& operator>>(istream& is, pair<T, U>& V){
    is >> V.F >> V.S;
    return is;
}

template<typename T>
istream& operator>>(istream& is, vector <T>& V){
    for(auto&& ele : V)is >> ele;
    return is;
}

template<typename T>
ostream& operator<<(ostream& os, const vector <T> V){
    os << "[";
    int cnt = 0;
    T curr;
    if(!V.empty()){
        for(int i = 0; i < V.size() - 1; ++i){
            if(V[i] == curr)cnt++;
            else cnt = 0;
            if(cnt == 4)os << "... ";
            if(cnt < 4)
                os << i << ":" << V[i] << " ";
            curr = V[i];
        }
        os << V.size() - 1 << ":" << V.back();
    }
    os << "]\n";
    return os;
}

template<typename T, typename U>
ostream& operator<<(ostream& os, const pair<T, U> P){
    os << "(";
    os << P.first << "," << P.second;
    os << ")";
    return os;
}

template<typename T, typename U>
ostream& operator<<(ostream& os, const set<T, U> V){
    os << "{";
    if(!V.empty()){
        auto it = V.begin();
        for(int i = 0; i < V.size() - 1; ++i){
            os << *it << " ";
            it++;
        }
        os << *it;
    }
    os << "}\n";
    return os;
}

template<typename K, typename H, typename P>
ostream& operator<<(ostream& os, const unordered_set<K, H, P> V){
    os << "{";
    if(!V.empty()){
        auto it = V.begin();
        for(int i = 0; i < V.size() - 1; ++i){
            os << *it << " ";
            it++;
        }
        os << *it;
    }
    os << "}\n";
    return os;
}

template<typename K, typename C>
ostream& operator<<(ostream& os, const multiset<K, C> V){
    os << "{";
    if(!V.empty()){
        auto it = V.begin();
        for(int i = 0; i < V.size() - 1; ++i){
            os << *it << " ";
            it++;
        }
        os << *it;
    }
    os << "}";
    return os;
}

template<typename K, typename T, typename C>
ostream& operator<<(ostream& os, const map<K, T, C> V){
    os << "{";
    if(!V.empty()){
        auto it = V.begin();
        for(int i = 0; i < V.size() - 1; ++i){
            os << "(";
            os << it->first << "," << it->second;
            os << ") ";
            it++;
        }
        os << "(";
        os << it->first << "," << it->second;
        os << ")";
    }
    os << "}\n";
    return os;
}

template<typename K, typename T, typename C>
ostream& operator<<(ostream& os, const unordered_map<K, T, C> V){
    os << "{";
    if(!V.empty()){
        auto it = V.begin();
        for(int i = 0; i < V.size() - 1; ++i){
            os << "(";
            os << it->first << "," << it->second;
            os << ") ";
            it++;
        }
        os << "(";
        os << it->first << "," << it->second;
        os << ")";
    }
    os << "}\n";
    return os;
}

template<typename T>
ostream& operator<<(ostream& os, const deque<T> V){
    os << "[";
    if(!V.empty()){
        for(int i = 0; i < V.size() - 1; ++i){
            os << V[i] << "->";
        }
        if(!V.empty())os << V.back();
    }
    os << "]\n";
    return os;
};

template<typename T, typename Cont, typename Comp>
ostream& operator<<(ostream& os, const priority_queue<T, Cont, Comp> V){
    priority_queue<T, Cont, Comp> _V = V;
    os << "[";
    if(!_V.empty()){
        while(_V.size() > 1){
            os << _V.top() << "->";
            _V.pop();
        }
        os << _V.top();
    }
    os << "]\n";
    return os;
};

template<class F>
struct y_combinator{
    F f; // the lambda will be stored here

    // a forwarding operator():
    template<class... Args>
    decltype(auto) operator()(Args&& ... args) const{
        // we pass ourselves to f, then the arguments.
        // the lambda should take the first argument as `auto&& recurse` or similar.
        return f(*this, std::forward<Args>(args)...);
    }
};

// helper function that deduces the type of the lambda:
template<class F>
y_combinator<std::decay_t<F>> recursive(F&& f){
    return {std::forward<F>(f)};
}

struct hash_pair{
    template<class T1, class T2>
    size_t operator()(const pair<T1, T2>& p) const{
        auto hash1 = hash<T1>{}(p.first);
        auto hash2 = hash<T2>{}(p.second);
        return hash1^hash2;
    }

};

template<typename U>
auto vec(int n, U v){
    return std::vector(n, v);
}

template<typename... Args>
auto vec(int n, Args... args){
    auto val = vec(std::forward<Args>(args)...);
    return std::vector<decltype(val)>(n, std::move(val));
}

const double PI = 2*acos(.0);
const int INF = 0x3f3f3f3f;

template<class T>
inline T ceil(T a, T b){return (a + b - 1)/b;}

inline long long popcount(ll x){return __builtin_popcountll(x);}

class No1301StrangeGraphShortestPath{
public:
    void solve(std::istream&, std::ostream&, std::ostream&);


};


template<typename T>
struct Dijkstra{
    struct Edge{
        int to;
        T cost;

        Edge(int to, T cost) : to(to), cost(cost){}

        bool operator<(const Edge& o) const{return cost > o.cost;}
    };

    vector<vector<Edge> > g;
    vector<T> ds;
    vector<int> bs;

    Dijkstra(int n) : g(n){}

    void add_edge(int u, int v, T c){
        g[u].emplace_back(v, c);
    }

    void build(int s){
        int n = g.size();
        ds.assign(n, numeric_limits<T>::max());
        bs.assign(n, -1);

        priority_queue<Edge> pq;
        ds[s] = 0;
        pq.emplace(s, ds[s]);

        while(!pq.empty()){
            auto p = pq.top();
            pq.pop();
            int v = p.to;
            if(ds[v] < p.cost) continue;
            for(auto e:g[v]){
                if(ds[e.to] > ds[v] + e.cost){
                    ds[e.to] = ds[v] + e.cost;
                    bs[e.to] = v;
                    pq.emplace(e.to, ds[e.to]);
                }
            }
        }
    }

    T operator[](int k){return ds[k];}

    vector<int> restore(int to){
        vector<int> res;
        if(bs[to] < 0) return res;
        while(~to) res.emplace_back(to), to = bs[to];
        reverse(res.begin(), res.end());
        return res;
    }
};

#ifndef ATCODER_MINCOSTFLOW_HPP
#define ATCODER_MINCOSTFLOW_HPP 1

#include <algorithm>
#include <cassert>
#include <limits>
#include <queue>
#include <vector>

namespace atcoder {

template <class Cap, class Cost> struct mcf_graph {
  public:
    mcf_graph() {}
    mcf_graph(int n) : _n(n), g(n) {}

    int add_edge(int from, int to, Cap cap, Cost cost) {
        assert(0 <= from && from < _n);
        assert(0 <= to && to < _n);
//        assert(0 <= cap);
//        assert(0 <= cost);
        int m = int(pos.size());
        pos.push_back({from, int(g[from].size())});
        int from_id = int(g[from].size());
        int to_id = int(g[to].size());
        if (from == to) to_id++;
        g[from].push_back(_edge{to, to_id, cap, cost});
        g[to].push_back(_edge{from, from_id, 0, -cost});
        return m;
    }

    struct edge {
        int from, to;
        Cap cap, flow;
        Cost cost;
    };

    edge get_edge(int i) {
        int m = int(pos.size());
        assert(0 <= i && i < m);
        auto _e = g[pos[i].first][pos[i].second];
        auto _re = g[_e.to][_e.rev];
        return edge{
            pos[i].first, _e.to, _e.cap + _re.cap, _re.cap, _e.cost,
        };
    }
    std::vector<edge> edges() {
        int m = int(pos.size());
        std::vector<edge> result(m);
        for (int i = 0; i < m; i++) {
            result[i] = get_edge(i);
        }
        return result;
    }

    std::pair<Cap, Cost> flow(int s, int t) {
        return flow(s, t, std::numeric_limits<Cap>::max()/2);
//        return flow(s, t, std::numeric_limits<Cap>::max());
    }
    std::pair<Cap, Cost> flow(int s, int t, Cap flow_limit) {
        return slope(s, t, flow_limit).back();
    }
    std::vector<std::pair<Cap, Cost>> slope(int s, int t) {
        return slope(s, t, std::numeric_limits<Cap>::max()/2);
//        return slope(s, t, std::numeric_limits<Cap>::max());
    }
    std::vector<std::pair<Cap, Cost>> slope(int s, int t, Cap flow_limit) {
        assert(0 <= s && s < _n);
        assert(0 <= t && t < _n);
        assert(s != t);
        // variants (C = maxcost):
        // -(n-1)C <= dual[s] <= dual[i] <= dual[t] = 0
        // reduced cost (= e.cost + dual[e.from] - dual[e.to]) >= 0 for all edge
        std::vector<Cost> dual(_n, 0), dist(_n);
        std::vector<int> pv(_n), pe(_n);
        std::vector<bool> vis(_n);
        auto dual_ref = [&]() {
            std::fill(dist.begin(), dist.end(),
            std::numeric_limits<Cost>::max()/2);
//                      std::numeric_limits<Cost>::max());
            std::fill(pv.begin(), pv.end(), -1);
            std::fill(pe.begin(), pe.end(), -1);
            std::fill(vis.begin(), vis.end(), false);
            struct Q {
                Cost key;
                int to;
                bool operator<(Q r) const { return key > r.key; }
            };
            std::priority_queue<Q> que;
            dist[s] = 0;
            que.push(Q{0, s});
            while (!que.empty()) {
                int v = que.top().to;
                que.pop();
                if (vis[v]) continue;
                vis[v] = true;
                if (v == t) break;
                // dist[v] = shortest(s, v) + dual[s] - dual[v]
                // dist[v] >= 0 (all reduced cost are positive)
                // dist[v] <= (n-1)C
                for (int i = 0; i < int(g[v].size()); i++) {
                    auto e = g[v][i];
                    if (vis[e.to] || !e.cap) continue;
                    // |-dual[e.to] + dual[v]| <= (n-1)C
                    // cost <= C - -(n-1)C + 0 = nC
                    Cost cost = e.cost - dual[e.to] + dual[v];
                    if (dist[e.to] - dist[v] > cost) {
                        dist[e.to] = dist[v] + cost;
                        pv[e.to] = v;
                        pe[e.to] = i;
                        que.push(Q{dist[e.to], e.to});
                    }
                }
            }
            if (!vis[t]) {
                return false;
            }

            for (int v = 0; v < _n; v++) {
                if (!vis[v]) continue;
                // dual[v] = dual[v] - dist[t] + dist[v]
                //         = dual[v] - (shortest(s, t) + dual[s] - dual[t]) + (shortest(s, v) + dual[s] - dual[v])
                //         = - shortest(s, t) + dual[t] + shortest(s, v)
                //         = shortest(s, v) - shortest(s, t) >= 0 - (n-1)C
                dual[v] -= dist[t] - dist[v];
            }
            return true;
        };
        Cap flow = 0;
        Cost cost = 0, prev_cost_per_flow = -1;
        std::vector<std::pair<Cap, Cost>> result;
        result.push_back({flow, cost});
        while (flow < flow_limit) {
            if (!dual_ref()) break;
            Cap c = flow_limit - flow;
            for (int v = t; v != s; v = pv[v]) {
                c = std::min(c, g[pv[v]][pe[v]].cap);
            }
            for (int v = t; v != s; v = pv[v]) {
                auto& e = g[pv[v]][pe[v]];
                e.cap -= c;
                g[v][e.rev].cap += c;
            }
            Cost d = -dual[s];
            flow += c;
            cost += c * d;
            if (prev_cost_per_flow == d) {
                result.pop_back();
            }
            result.push_back({flow, cost});
            prev_cost_per_flow = d;
        }
        return result;
    }

  private:
    int _n;

    struct _edge {
        int to, rev;
        Cap cap;
        Cost cost;
    };

    std::vector<std::pair<int, int>> pos;
    std::vector<std::vector<_edge>> g;
};

}  // namespace atcoder

#endif  // ATCODER_MINCOSTFLOW_HPP

using namespace atcoder;
void No1301StrangeGraphShortestPath::solve(std::istream& cin, std::ostream& cout, std::ostream& cerr){
    int N, M;
    cin >> N >> M;
    mcf_graph<ll, ll> g(N);
    REP(i, M){
        ll u, v, c, d;
        cin >> u >> v >> c >> d;
        u--, v--;
        g.add_edge(u,v,1,c);
        g.add_edge(v,u,1,c);
        g.add_edge(u,v,2,d);
        g.add_edge(v,u,2,d);
    }
    print(g.flow(0, N-1, 2).S);

}
















#undef int
int main() {

	No1301StrangeGraphShortestPath solver;
	std::istream& in(std::cin);
	std::ostream& out(std::cout);
    std::ostringstream err;
	in.tie(0); ios::sync_with_stdio(0);
    solver.solve(in, out,err);
	return 0;
}
0