結果
| 問題 | No.1301 Strange Graph Shortest Path | 
| コンテスト | |
| ユーザー |  | 
| 提出日時 | 2020-11-27 23:46:45 | 
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) | 
| 結果 | 
                                AC
                                 
                             | 
| 実行時間 | 285 ms / 3,000 ms | 
| コード長 | 3,135 bytes | 
| コンパイル時間 | 1,354 ms | 
| コンパイル使用メモリ | 111,448 KB | 
| 最終ジャッジ日時 | 2025-01-16 08:42:24 | 
| ジャッジサーバーID (参考情報) | judge1 / judge2 | 
(要ログイン)
| ファイルパターン | 結果 | 
|---|---|
| sample | AC * 2 | 
| other | AC * 33 | 
コンパイルメッセージ
main.cpp: In function ‘int main()’:
main.cpp:99:14: warning: ignoring return value of ‘int scanf(const char*, ...)’ declared with attribute ‘warn_unused_result’ [-Wunused-result]
   99 |         scanf("%d %d %d %d", &u, &v, &c, &d);
      |         ~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
            
            ソースコード
#include <iostream>
#include <algorithm>
#include <map>
#include <set>
#include <queue>
#include <stack>
#include <numeric>
#include <bitset>
#include <cmath>
static const int MOD = 1000000007;
using ll = long long;
using u32 = unsigned;
using u64 = unsigned long long;
using namespace std;
template<class T> constexpr T INF = ::numeric_limits<T>::max() / 32 * 15 + 208;
template<typename F, typename C>
struct PrimalDual {
    struct edge {
        int to; F cap; C cost; int rev;
        edge() = default;
        edge(int to, F cap, C cost, int rev):to(to), cap(cap), cost(cost), rev(rev) {};
    };
    vector<vector<edge>> G;
    vector<C> potential, min_cost;
    vector<int> prevv, preve;
    explicit PrimalDual(int n) : G(n), potential(n), min_cost(n), prevv(n), preve(n) {}
    void add_edge(int u, int v, F cap, C cost){
        G[u].emplace_back(v, cap, cost, G[v].size());
        G[v].emplace_back(u, 0, -cost, G[u].size()-1);
    }
    struct P{
        C first; int second;
        P(C first,int second):first(first),second(second){}
        bool operator<(const P&a) const{return a.first<first;}
    };
    void dijkstra(int s){
        priority_queue<P> Q;
        fill(min_cost.begin(),min_cost.end(), INF<C>);
        min_cost[s] = 0;
        Q.emplace(0, s);
        while(!Q.empty()){
            P p = Q.top(); Q.pop();
            int v = p.second;
            if(min_cost[v] < p.first) continue;
            for(int i = 0; i < G[v].size(); ++i){
                edge &e=G[v][i];
                if(e.cap==0) continue;
                if(min_cost[v]+e.cost+potential[v]-potential[e.to] < min_cost[e.to]){
                    min_cost[e.to] = min_cost[v]+e.cost+potential[v]-potential[e.to];
                    prevv[e.to] = v;
                    preve[e.to] = i;
                    Q.emplace(min_cost[e.to], e.to);
                }
            }
        }
    }
    C flow(int s, int t, F fl, int &ok){
        C res = 0;
        fill(potential.begin(),potential.end(), 0);
        while(fl > 0){
            dijkstra(s);
            if(min_cost[t] == INF<C>){
                ok = 0;
                return res;
            }
            for (int i = 0; i < potential.size(); ++i) {
                if(min_cost[i] < INF<C>) potential[i] += min_cost[i];
            }
            F d = fl;
            for(int v = t; v != s; v = prevv[v]){
                d = min(d, G[prevv[v]][preve[v]].cap);
            }
            fl -= d;
            res += potential[t]*d;
            for(int v = t; v != s; v = prevv[v]){
                G[prevv[v]][preve[v]].cap -= d;
                G[v][G[prevv[v]][preve[v]].rev].cap += d;
            }
        }
        ok = 1;
        return res;
    }
};
int main() {
    int n, m;
    cin >> n >> m;
    PrimalDual<int, ll> G(n);
    for (int i = 0; i < m; ++i) {
        int u, v, c, d;
        scanf("%d %d %d %d", &u, &v, &c, &d);
        u--; v--;
        G.add_edge(u, v, 1, c);
        G.add_edge(v, u, 1, c);
        G.add_edge(u, v, 1, d);
        G.add_edge(v, u, 1, d);
    }
    int ret = 0;
    cout << G.flow(0, n-1, 2, ret) << "\n";
    return 0;
}
            
            
            
        